Understanding the stability of turbulent flames is a key for the design of efficient combustion systems. The present paper reports an experimental study on the effect of the internal geometry of a rectangular orifice on the characteristics/stability of a turbulent methane flame. Three rectangular nozzles with different orifice lengths having an identical exit aspect ratio (AR) of 2 were used. The co-airflow strength was also varied to evaluate its effect on the jet flow emerging from the rectangular nozzle. The experimental data revealed that the jet initial conditions affect both the flow characteristics and the liftoff of turbulent diffusion methane flame. That is, increasing the orifice length of the rectangular nozzle resulted in delaying the occurrence of the axis-switching phenomenon, reducing the length of the jet potential core, and accelerating the liftoff transition of the attached flame. The co-airflow was found to reduce the velocity strain rate in the shear layer, displace the occurrence of axis-switching farther downstream of the jet, and delay flame detachment. The results revealed also that there is a clear interplay between the flame liftoff and the jet near-field molecular mixing and flow characteristics. That is, a rectangular jet which spreads faster and generates higher near-field velocity strain and turbulence intensity causes flame detachment at a lower fuel jet velocity. Based on this, a correlation was found between the flame liftoff velocity, the fuel molecular thermal diffusivity, the stoichiometric laminar flame speed, and the fuel jet strain rate at the nozzle exit. This relationship was shown to successfully predict the liftoff velocity of methane flame as well as other common gaseous hydrocarbons and hydrogen flames.

References

1.
Nathan
,
G. J.
,
Mi
,
J.
,
Alwahabi
,
Z. T.
,
Newbold
,
G. J. R.
, and
Nobes
,
D. S.
,
2006
, “
Impacts of a Jet’s Exit Flow Pattern on Mixing and Combustion Performance
,”
Prog. Energy Combust. Sci.
,
32
(
5–6
), pp.
496
538
.10.1016/j.pecs.2006.07.002
2.
Iyogun
,
C. O.
, and
Birouk
,
M.
,
2009
, “
Effect of Sudden Expansion on Entrainment and Spreading Rates of a Jet Issuing From Asymmetric Nozzles
,”
Flow, Turbul. Combust.
,
82
(
3
), pp.
287
315
.10.1007/s10494-008-9176-9
3.
Quinn
,
W. R.
,
1992
, “
Turbulent Free Jet Flows Issuing From Sharp-Edged Rectangular Slots: The Influence of Slot Aspect Ratio
,”
Exp. Therm. Fluid Sci.
,
5
(
2
), pp.
203
215
.10.1016/0894-1777(92)90007-R
4.
Iyogun
,
C. O.
, and
Birouk
,
M.
,
2008
, “
Effect of Fuel Nozzle Geometry on the Stability of a Turbulent Jet Methane Flame
,”
Combust. Sci. Technol.
,
180
(
12
), pp.
2186
2209
.10.1080/00102200802414980
5.
Akbarzadeh
,
M.
,
2014
, “
An Experimental Study on the Liftoff of a Co-Flowing Non-Premixed Turbulent Methane Flame: Effect of the Fuel Nozzle Geometry
,” Ph.D. thesis, University of Manitoba, Winnipeg, Canada.
6.
Feikema
,
D.
,
Chen
,
R.
, and
Driscoll
,
J.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.10.1016/0010-2180(90)90126-C
7.
Gutmark
,
E. J.
, and
Grinstein
,
F. F.
,
1999
, “
Flow Control With Noncircular Jets
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
239
272
.10.1146/annurev.fluid.31.1.239
8.
Grandmaison
,
E.
,
Pollard
,
A.
, and
Ng
,
S.
,
1991
, “
Scalar Mixing in a Free, Turbulent Rectangular Jet
,”
Int. J. Heat Mass Transfer
,
34
(
10
), pp.
2653
2662
.10.1016/0017-9310(91)90104-M
9.
Sfeir
,
A.
,
1976
, “
The Velocity and Temperature Fields of Rectangular Jets
,”
Int. J. Heat Mass Transfer
,
19
(
11
), pp.
1289
1297
.10.1016/0017-9310(76)90081-8
10.
Tsuchiya
,
Y.
, and
Horikoshi
,
C.
,
1986
, “
On the Spread of Rectangular Jets
,”
Exp. Fluids
,
4
(
4
), pp.
197
204
.10.1007/BF00717815
11.
Lozanova
,
M.
, and
Stankov
,
P.
,
1998
, “
Experimental Investigation on the Similarity of a 3D Rectangular Turbulent Jet
,”
Exp. Fluids
,
24
(
5–6
), pp.
470
478
.10.1007/s003480050196
12.
Krothapalli
,
A.
,
Baganoff
,
D.
, and
Karamcheti
,
K.
,
1981
, “
On the Mixing of a Rectangular Jet
,”
J. Fluid Mech.
,
107
, pp.
201
220
.10.1017/S0022112081001730
13.
Akbarzadeh
,
M.
,
Birouk
,
M.
, and
Sarh
,
B.
,
2012
, “
Numerical Simulation of a Turbulent Free Jet Issuing From a Rectangular Nozzle
,”
Comput. Therm. Sci.
,
4
(
1
), pp.
1
22
.10.1615/ComputThermalScien.2012003883
14.
Quinn
,
W. R.
,
1995
, “
Turbulent Mixing in a Free Jet Issuing From a Low Aspect Ratio Contoured Rectangular Nozzle
,”
Aeronaut. J.
,
99
(
988
), pp.
337
342
.
15.
Gollahalli
,
S. R.
,
Khanna
,
T.
, and
Prabhu
,
N.
,
1992
, “
Diffusion Flames of Gas Jets Issued From Circular and Elliptic Nozzles
,”
Combust. Sci. Technol.
,
86
(
1–6
), pp.
267
288
.10.1080/00102209208947199
16.
Akbarzadeh
,
M.
, and
Birouk
,
M.
,
2014
, “
Liftoff of a Co-Flowing Non-Premixed Turbulent Methane Flame: Effect of the Fuel Nozzle Orifice Geometry
,”
Flow, Turbul. Combust.
,
92
(
4
), pp.
903
929
.10.1007/s10494-014-9537-5
17.
Iyogun
,
C. O.
,
2009
, “
Effect of Nozzle Geometry on the Stability of a Turbulent Jet Flame With and Without Swirling Co-Flow
,” Ph.D. thesis, University of Manitoba.
18.
Akbarzadeh
,
M.
, and
Birouk
,
M.
,
2013
, “
Liftoff of a Co-Flowing Non-Premixed Turbulent Methane Flame: Effect of the Internal Geometrical Parameters of a Circular Fuel Nozzle
,”
Combust. Sci. Technol.
,
185
(
10
), pp.
1
23
.10.1080/00102202.2012.707260
19.
Abramovich
,
G.
,
1982
, “
On the Deformation of the Rectangular Turbulent Jet Cross-Section
,”
Int. J. Heat Mass Transfer
,
25
(
12
), pp.
1885
1894
.10.1016/0017-9310(82)90111-9
20.
Everest
,
D.
,
Feikema
,
D.
, and
Driscoll
,
J.
,
1996
, “
Images of the Strained Flammable Layer Used to Study the Liftoff of Turbulent Jet Flames
,”
Symp. Combust.
,
26
(
1
), pp.
129
136
.10.1016/S0082-0784(96)80209-8
21.
Chung
,
S. H.
, and
Lee
,
B. J.
,
1991
, “
On the Characteristics of Laminar Lifted Flames in a Nonpremixed Jet
,”
Combust. Flame
,
86
(
1–2
), pp.
62
72
.10.1016/0010-2180(91)90056-H
22.
Lewis
,
B.
, and
Von Elbe
,
G.
,
2012
,
Combustion, Flames and Explosions of Gases
,
Academic Press
,
Orlando
, FL.
23.
Lee
,
B. J.
, and
Chung
,
S. H.
,
1997
, “
Stabilization of Lifted Tribrachial Flames in a Laminar Nonpremixed Jet
,”
Combust. Flame
,
109
(
1–2
), pp.
163
172
.10.1016/S0010-2180(96)00145-9
24.
Lee
,
B.
,
Cha
,
M.
, and
Chung
,
S.
,
1997
, “
Characteristics of Laminar Lifted Flames in a Partially Premixed Jet
,”
Combust. Sci. Technol.
,
127
(
1–6
), pp.
55
70
.10.1080/00102209708935686
25.
Savas
,
O.
, and
Gollahalli
,
S. R.
,
1986
, “
Flow Structure in Near-Nozzle Region of Gas Jet Flames
,”
AIAA J.
,
24
(
7
), pp.
1137
1140
.10.2514/3.9404
26.
Cessou
,
A.
,
Maurey
,
C.
, and
Stepowski
,
D.
,
2004
, “
Parametric and Statistical Investigation of the Behavior of a Lifted Flame Over a Turbulent Free-Jet Structure
,”
Combust. Flame
,
137
(
4
), pp.
458
477
.10.1016/j.combustflame.2004.03.005
27.
Takahashi
,
F.
, and
Schmoll
,
W. J.
,
1991
, “
Lifting Criteria of Jet Diffusion Flames
,”
Symp. Combust.
,
23
(
1
), pp.
677
683
.10.1016/S0082-0784(06)80316-4
28.
Gollahalli
,
S. R.
,
Savaş
,
Ö.
,
Huang
,
R. F.
, and
Azara
,
J. L. R.
,
1988
, “
Structure of Attached and Lifted Gas Jet Flames in Hysteresis Region
,”
Symp. Combust.
,
21
(
1
), pp.
1463
1471
.10.1016/S0082-0784(88)80379-5
29.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
30.
Undapalli
,
S.
,
2008
, “
Large Eddy Simulation of Premixed and Non-Premixed Combustion in a Stagnation Point Reverse Flow Combustor
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
31.
Akbarzadeh
,
M.
, and
Birouk
,
M.
,
2014
, “
On the Hysteresis Phenomenon of Turbulent Lifted Diffusion Methane Flame
,”
Flow, Turbul. Combust.
(epub).10.1007/s10494-014-9573-1
You do not currently have access to this content.