An efficient frequency-domain method has been developed to analyze the forced response of large-scale nonlinear gas turbine structures with bifurcations. The method allows detection and localization of the design and operating conditions sets where bifurcations occur, calculation of tangents to the solution trajectory, and continuation of solutions under parameter variation for structures with bifurcations. The method is aimed at calculation of steady-state periodic solution, and multiharmonic representation of the variation of displacements in time is used. The possibility of bifurcations in realistic gas-turbine structures with friction contacts and with cubic nonlinearity has been shown.
Issue Section:
Gas Turbines: Structures and Dynamics
References
1.
Sanliturk
, K. Y.
, Imregun
, M.
, and Ewins
, D. J.
, 1997
, “Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers
,” ASME J. Vib. Acoust.
, 119
(1
), pp. 96
–103
.2.
Chen
, J.
, and Menq
, C.
, 2001
, “Prediction of Periodic Response of Blades Having 3D Nonlinear Shroud Constraints
,” ASME J. Eng. Gas Turbines Power
, 123
(4
), pp. 901
–909
.3.
Petrov
, E. P.
, and Ewins
, D. J.
, 2003
, “Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Discs
,” ASME J. Turbomach.
, 125
(2
), pp. 364
–371
.4.
Zucca
, S.
, Firrone
, C. M.
, and Gola
, M. M.
, 2012
, “Numerical Assessment of Friction Damping at Turbine Blade Root Joints by Simultaneous Calculation of the Static and Dynamic Contact Loads
,” Nonlinear Dyn.
, 67
(3
), pp. 1943
–1955
.5.
Laborenz
, J.
, Krack
, M.
, Panning
, L.
, Wallaschek
, J.
, Denk
, M.
, and Masserey
, P.-A.
, 2012
, “Eddy Current Damper for Turbine Blading: Electromagnetic Finite Element Analysis and Measurement Results
,” ASME J. Eng. Gas Turbines Power
, 134
(4
), p. 042504
.6.
Siewert
, C.
, Panning
, L.
, Wallaschek
, J.
, and Richter
, C.
, 2009
, “Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,” ASME
Paper No. GT2009-59201. 7.
Batailly
, A.
, Legrand
, M.
, et al., 2012
, “Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,” ASME J. Eng. Gas Turbines Power
, 134
(8
), p. 082504
.8.
Cigeroglu
, E.
, An
, N.
, and Menq
, C.-H.
, 2007
, “Wedge Damper Modeling and Forced Response Prediction of Frictionally Constrained Blades
,” ASME
Paper No. GT2007-27963. 9.
Cameron
, T. M.
, and Griffin
, J. H.
, 1989
, “An Alternating Frequency/Time Domain Method for Calculating Steady Response of Nonlinear Dynamic Systems
,” ASME J. Appl. Mech.
, 56
(1
), pp. 149
–154
.10.
Cardona
, A.
, Coune
, T.
, Lerusse
, A.
, and Geradin
, M.
, 1994
, “A Multiharmonic Method for Non-Linear Vibration Analysis
,” Int. J. Numer. Methods Eng.
, 37
(9
), pp. 1593
–1608
.11.
Petrov
, E. P.
, 2007
, “Direct Parametric Analysis of Resonance Regimes for Nonlinear Vibrations of Bladed Discs
,” ASME J. Turbomach.
, 129
(3
), pp. 495
–502
.12.
Petrov
, E. P.
, 2009
, “Method for Sensitivity Analysis of Resonance Forced Response of Bladed Disks With Nonlinear Contact Interfaces
,” ASME J. Eng. Gas Turbines Power
, 131
(2
), p. 022510
.13.
Petrov
, E. P.
, 2005
, “Sensitivity Analysis of Nonlinear Forced Response for Bladed Discs With Friction Contact Interfaces
,” ASME
Paper No. GT2005-68935. 14.
Kuznetsov
, Y. A.
, 1998
, Elements of Applied Bifurcation Theory
, Springer-Verlag
, New York
.15.
Moore
, G.
, and Spence
, A.
, 1980
, “The Calculation of Turning Points of Nonlinear Equations
,” SIAM J. Numer. Anal.
, 17
(4
), pp. 567
–576
.16.
Geradin
, M.
, and Cardona
, A.
, 2001
, Flexible Multibody Dynamics: A Finite Element Approach
, Wiley
, Chichester, UK
, p. 327
.17.
Felippa
, C. A.
, 1987
, “Traversing Critical Points by Penalty Springs
,” NUMETA’87 Conference
, Swansea, Wales, Nijhoff Publishers, Dordrecht, The Netherlands, pp. C2/1
–C2/8
.18.
Wriggers
, P.
, and Simo
, J. C.
, 1990
, “A General Procedure for the Direct Computation of Turning and Bifurcation Points
,” Int. J. Numer. Methods Eng.
, 30
(1
), pp. 155
–176
.19.
Riks
, E.
, 1979
, “An Incremental Approach to the Solution of the Snapping and Buckling Problems
,” Int. J. Solids Struct.
, 15
(7
), pp. 529
–551
.20.
Crisfield
, M.
, 1981
, “A Fast Incremental/Iterative Solution Procedure That Handles Snap-Through
,” Comput. Struct.
, 13
, pp. 55
–62
.21.
Fried
, I.
, 1984
, “Orthogonal Trajectory Accession to the Nonlinear Equilibrium Curve
,” Comput. Methods Appl. Mech. Eng.
, 47
(3
), pp. 283
–297
.22.
Petrov
, E. P.
, 2014
, “Sensitivity Analysis of Multiharmonic Self-Excited Limit-Cycle Vibrations in Gas-Turbine Engine Structures With Nonlinear Contact Interfaces
,” ASME
Paper No. GT2014-26673. 23.
Petrov
, E. P.
, 2012
, “Multiharmonic Analysis of Nonlinear Whole Engine Dynamics With Bladed Disc-Casing Rubbing Contacts
,” ASME
Paper No. GT2012-68474. 24.
Huang
, S.
, Petrov
, E. P.
, and Ewins
, D. J.
, 2006
, “Comprehensive Analysis of Periodic Regimes of Forced Vibration for Structures With Nonlinear Snap-Through Springs
,” 6th International Conference on Modern Practice in Stress and Vibration Analysis
, Bath, UK, Sept. 5–7, pp. 443
–453
.25.
DaCunha
, J.
, and Davis
, J.
, 2011
, “A Unified Floquet Theory for Discrete, Continuous, and Hybrid Periodic Linear Systems
,” J. Differ. Equations
, 251
(11
), pp. 2987
–3027
.26.
Von Groll
, G.
, and Ewins
, D. J.
, 2001
, “The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,” J. Sound Vib.
, 241
(2
), pp. 223
–233
.Copyright © 2016 by ASME
You do not currently have access to this content.