Combustor liner of present gas turbine engines is subjected to high thermal loads as it surrounds high temperature combustion reactants and is hence facing the related radiative load. This generally produces high thermal stress levels on the liner, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the flame tube life span and to ensure safe operations. The present study aims at investigating the aerothermal behavior of a GE Dry Low NOx (DLN1) class flame tube and in particular at evaluating working metal temperatures of the liner in relation to the flow and heat transfer state inside and outside the combustion chamber. Three different operating conditions have been accounted for (i.e., lean–lean partial load, premixed full load, and primary load) to determine the amount of heat transfer from the gas to the liner by means of computational fluid dynamics (CFD). The numerical predictions have been compared to experimental measurements of metal temperature showing a good agreement between CFD and experiments.

References

1.
Kapat
,
J.
,
Agrawal
,
A.
, and
Yang
,
T.
,
1994
, “
Air Extraction in a Gas Turbine for Integrated Gasification Combined Cycle (IGCC): Experiments and Analysis
,”
ASME
Paper No. 94-GT-193.
2.
Kapat
,
J.
,
Wang
,
T.
,
Ryan
,
W.
,
Diakunchak
,
I.
, and
Bannister
,
R.
,
1996
, “
Cold Flow Experiments in a Sub-Scale Model of the Diffuser-Combustor Section of an Industrial Gas Turbine
,”
ASME
Paper No. 96-GT-518.
3.
Wang
,
T.
,
Kapat
,
J.
,
Ryan
,
W.
,
Diakunchak
,
I.
, and
Bannister
,
R.
,
1999
, “
Effect of Air Extraction for Cooling and/or Gasification on Combustor Flow Uniformity
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
46
54
.
4.
Zhou
,
D.
,
Wang
,
T.
, and
Ryan
,
W.
,
1996
, “
Cold Flow Computations for the Diffuser-Combustor Section of an Industrial Gas Turbine
,”
ASME
Paper No. 96-GT-513.
5.
Wang
,
L.
, and
Wang
,
T.
,
2013
, “
Investigation of the Effect of Perforated Sheath on Thermal-Flow Characteristics Over a Gas Turbine Reverse-Flow Combustor, Part 1—Experiment
,”
ASME
Paper No. GT2013-94474.
6.
Wang
,
L.
, and
Wang
,
T.
,
2013
, “
Investigation of the Effect of Perforated Sheath on Thermal-Flow Characteristics Over a Gas Turbine Reverse-Flow Combustor, Part 2—Computational Analysis
,”
ASME
Paper No. GT2013-94475.
7.
Maffulli
,
R.
, and
He
,
L.
,
2013
, “
Wall Temperature Effects on Heat Transfer Coefficient
,”
ASME
Paper No. GT2013-94291.
8.
Dorfman
,
A.
, and
Renner
,
Z.
,
2009
, “
Conjugate Problems in Convective Heat Transfer: Review
,”
Math. Prob. Eng.
,
2009
, p. 927350.
9.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME
Paper No. GT2003-38369.
10.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
, and
Laskowski
,
G. M.
,
2011
, “
The Effects of Conjugate Heat Transfer on the Thermal Field Above a Film Cooled Wall
,”
ASME
Paper No. GT2011-46617.
11.
Dawes
,
W. N.
,
Kellar
,
W. P.
, and
Harvey
,
S. A.
,
2010
, “
Towards Cooled Turbine Preliminary Life Prediction via Concurrent Aerodynamic, Thermal and Material Stress Simulations on Conjugate Meshes
,”
ASME
Paper No. GT2010-22482.
12.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2013
, “
Local Source Based cfd Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011506
.
13.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Andreini
,
A.
,
Mazzei
,
L.
,
Riccio
,
G.
,
Marini
,
A.
, and
Ciani
,
A.
,
2014
, “
Thermo-Fluid Dynamic Analysis of a Gas Turbine Transition-Piece
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062602
.
14.
Cocca
,
M. A.
, and
Marcucci
,
N.
,
Performance and Reliability Improvements for ms5002 Gas Turbines
, GE Power Generation, Technical Report No. GER-4171, http://site.ge-energy.com/prod_serv/products/tech_docs/en/downloads/ger4171.pdf
15.
Ceccherini
,
G.
,
Malquori
,
D.
,
Petillo
,
G.
, and
Falsini
,
M.
,
2013
,
Retrofitability of dln/dle Systems
, GE Oil and Gas, http://site.ge-energy.com/businesses/ge_oilandgas/en/techinsights/pdf/retrofittability-dln-dle-systems.pdf
16.
Thomas
,
L. L.
,
Simons
,
D. W.
,
Popovic
,
P.
,
Romoser
,
C. E.
,
Vandale
,
D. D.
, and
Citeno
,
J. V.
,
2011
, “
E-class dln Technology Advancements, dln1+
,”
ASME
Paper No. GT2011-45944.
17.
Gülder
,
Ö.
,
1984
, “
Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels
,”
SAE
Technical Paper No. 841000.
You do not currently have access to this content.