Flame structure can have a significant effect on a combustor's static stability (resistance to blowoff) and dynamic stability (combustion instability) and therefore is an important aspect of the combustion process that must be taken into account in the design of gas turbine combustors. While the relationship between flame structure and flame stability has been studied extensively in single-nozzle combustors, relatively few studies have been conducted in multinozzle combustor configurations typical of actual gas turbine combustion systems. In this paper, a chemiluminescence-based tomographic reconstruction technique is used to obtain three-dimensional images of the flame structure in a laboratory-scale five-nozzle can combustor. Analysis of the 3D images reveals features of the complex, three-dimensional structure of this multinozzle flame. Effects of interacting swirling flows, flame–flame interactions, and flame–wall interactions on the flame structure are also discussed.

References

1.
Syred
,
N.
, and
Beer
,
J.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.
2.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
3.
Lucca-Negro
,
O.
, and
O'doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.
4.
Chterev
,
I.
,
Foti
,
D.
,
Seitzman
,
J.
,
Menon
,
S.
, and
Lieuwen
,
T.
,
2012
, “
Flow Field Characterization in a Premixed, Swirling Annular Flow
,”
AIAA
Paper No. 2012-0450.
5.
Chterev
,
I.
,
Foley
,
C. W.
,
Foti
,
D.
,
Kostka
,
S.
,
Caswell
,
A. W.
,
Jiang
,
N.
,
Lynch
,
A.
,
Noble
,
D. R.
,
Menon
,
S.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Flame and Flow Topologies in an Annular Swirling Flow
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1041
1074
.
6.
Fu
,
Y.
,
Cai
,
J.
,
Jeng
,
S.-M.
, and
Mongia
,
H.
,
2005
, “
Confinement Effects on the Swirling Flow of a Counter-Rotating Swirl Cup
,”
ASME
Paper No. GT2005-68622.
7.
Syred
,
N.
, and
Dahman
,
K.
,
1978
, “
Effect of High Levels of Confinement Upon the Aerodynamics of Swirl Burners
,”
J. Energy
,
2
(
1
), pp.
8
15
.
8.
Gruber
,
A.
,
Sankaran
,
R.
,
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2010
, “
Turbulent Flame–Wall Interaction: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
658
, pp.
5
32
.
9.
Nogenmyr
,
K.-J.
,
Cao
,
H.
,
Chan
,
C.
, and
Cheng
,
R.
,
2013
, “
Effects of Confinement on Premixed Turbulent Swirling Flame Using Large Eddy Simulation
,”
Combust. Theory Modell.
,
17
(
6
), pp.
1003
1019
.
10.
De Rosa
,
A. J.
,
Peluso
,
S.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2015
, “
The Effect of Confinement of the Structure and Dynamic Response of Lean-Premixed, Swirl-Stabilized Flames
,”
ASME
Paper No. GT2015-42178.
11.
Cai
,
J.
,
2006
, “
Aerodynamics of Lean Direct Injection Combustor With Multi-Swirler Arrays
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
12.
Cai
,
J.
,
Jeng
,
S.
, and
Tacina
,
R.
,
2001
, “
Multi-Swirler Aerodynamics: Experimental Measurements
,”
AIAA
Paper No. 2001-3574.
13.
Cai
,
J.
,
Jeng
,
S.-M.
, and
Tacina
,
R.
,
2002
, “
Multi-Swirler Aerodynamics: Comparison of Different Configurations
,”
ASME
Paper No. GT2002-30464.
14.
Kao
,
Y.-H.
,
Tambe
,
S. B.
, and
Jeng
,
S.-M.
,
2014
, “
Aerodynamics Study of a Linearly-Arranged 5-Swirler Array
,”
ASME
Paper No. GT2014-25094.
15.
Kao
,
Y.-H.
,
Tambe
,
S. B.
, and
Jeng
,
S.-M.
,
2013
, “
Aerodynamics of Linearly Arranged Rad-Rad Swirlers, Effect of Number of Swirlers and Alignment
,”
ASME
Paper No. GT2013-94280.
16.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
Cinematographic OH-PLIF Measurements of Two Interacting Turbulent Premixed Flames With and Without Acoustic Forcing
,”
Combust. Flame
,
159
(
3
), pp.
1109
1126
.
17.
Hirasawa
,
T.
,
Gotanda
,
K.
,
Masuda
,
H.
, and
Nakamura
,
Y.
,
2012
, “
Impact of Flame–Flame Interactions in Identical Twin Diffusion Microflames
,”
Combust. Sci. Technol.
,
184
(
10–11
), pp.
1651
1663
.
18.
Tatsumi
,
K.
,
Rai
,
Y.
,
Nibayashi
,
Y.
, and
Nakabe
,
K.
,
2011
, “
Mixing and Combustion Performances of a Baffle-Plate-Type Miniature Confined Multi-Jet
,”
J. Fluid Sci. Technol.
,
6
(
4
), pp.
465
476
.
19.
Francois
,
I.
,
Larrauri
,
D.
, and
Escudié
,
D.
,
1997
, “
Interaction Between Two Premixed Laminar V-Shaped Flame Fronts at Low Lewis Number
,”
Combust. Flame
,
110
(
1–2
), pp.
14
24
.
20.
Yokomori
,
T.
, and
Mizomoto
,
M.
,
2002
, “
Interaction of Adjacent Flame Surfaces on the Formation of Wrinkling Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1511
1517
.
21.
Fanaca
,
D.
,
Alemela
,
P.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in an Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071502
.
22.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.
23.
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2014
, “
Flame Dynamics and Unsteady Heat Release Rate of Self-Excited Azimuthal Modes in an Annular Combustor
,”
Combust. Flame
,
161
(
10
), pp.
2565
2578
.
24.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.
25.
Samarasinghe
,
J.
,
Peluso
,
S.
,
Szedlmayer
,
M.
,
De Rosa
,
A.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2013
, “
Three-Dimensional Chemiluminescence Imaging of Unforced and Forced Swirl-Stabilized Flames in a Lean Premixed Multi-Nozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
101503
.
26.
Szedlmayer
,
M. T.
,
Quay
,
B. D.
,
Samarasinghe
,
J.
,
De Rosa
,
A.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
2011
, “
Forced Flame Response of a Lean Premixed Multi-Nozzle Can Combustor
,”
ASME
Paper No. GT2011-46080.
27.
Beer
,
J.
, and
Chigier
,
N.
,
1972
,
Combustion Aerodynamics
,
Applied Science Publication
,
London
.
28.
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.
29.
Nori
,
V.
, and
Seitzman
,
J.
,
2008
, “
Evaluation of Chemiluminescence as a Combustion Diagnostic Under Varying Operating Conditions
,”
AIAA
Paper No. 2008-953.
30.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.
31.
Ikeda
,
Y.
,
Kojima
,
J.
,
Nakajima
,
T.
,
Akamatsu
,
F.
, and
Katsuki
,
M.
,
2000
, “
Measurement of the Local Flamefront Structure of Turbulent Premixed Flames by Local Chemiluminescence
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
343
350
.
32.
Lilley
,
D. G.
,
1977
, “
Swirl Flows in Combustion: A Review
,”
AIAA J.
,
15
(
8
), pp.
1063
1078
.
33.
Anacleto
,
P.
,
Fernandes
,
E.
,
Heitor
,
M.
, and
Shtork
,
S.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.
34.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Tomographic Reconstruction of OH* Chemiluminescence in Two Interacting Turbulent Flames
,”
Meas. Sci. Technol.
,
24
(
2
), p.
024013
.
35.
Birbaud
,
A.
,
Durox
,
D.
,
Ducruix
,
S.
, and
Candel
,
S.
,
2007
, “
Dynamics of Confined Premixed Flames Submitted to Upstream Acoustic Modulations
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1257
1265
.
You do not currently have access to this content.