In gas turbines, hot mainstream flow can be ingested into the wheel-space formed between stator and rotor disks as a result of the circumferential pressure asymmetry in the annulus; this ingress can significantly affect the operating life, performance, and integrity of highly stressed, vulnerable engine components. Rim seals, fitted at the periphery of the disks, are used to minimize ingress and therefore reduce the amount of purge flow required to seal the wheel-space and cool the disks. This paper presents experimental results from a new 1.5-stage test facility designed to investigate ingress into the wheel-spaces upstream and downstream of a rotor disk. The fluid-dynamically scaled rig operates at incompressible flow conditions, far removed from the harsh environment of the engine which is not conducive to experimental measurements. The test facility features interchangeable rim-seal components, offering significant flexibility and expediency in terms of data collection over a wide range of sealing flow rates. The rig was specifically designed to enable an efficient method of ranking and quantifying the performance of generic and engine-specific seal geometries. The radial variation of CO2 gas concentration, pressure, and swirl is measured to explore, for the first time, the flow structure in both the upstream and downstream wheel-spaces. The measurements show that the concentration in the core is equal to that on the stator walls and that both distributions are virtually invariant with radius. These measurements confirm that mixing between ingress and egress is essentially complete immediately after the ingested fluid enters the wheel-space and that the fluid from the boundary layer on the stator is the source of that in the core. The swirl in the core is shown to determine the radial distribution of pressure in the wheel-space. The performance of a double radial-clearance seal is evaluated in terms of the variation of effectiveness with sealing flow rate for both the upstream and the downstream wheel-spaces and is found to be independent of rotational Reynolds number. A simple theoretical orifice model was fitted to the experimental data showing good agreement between theory and experiment for all cases. This observation is of great significance as it demonstrates that the theoretical model can accurately predict ingress even when it is driven by the complex unsteady pressure field in the annulus upstream and downstream of the rotor. The combination of the theoretical model and the new test rig with its flexibility and capability for detailed measurements provides a powerful tool for the engine rim-seal designer.

References

1.
Carey
,
C.
,
Inderwildi
,
O.
, and
King
,
D.
,
2009
, “
Sealing Technologies—Signed, Sealed and Delivering Emissions Savings
,”
Aviat. Environ.
,
4
, pp.
44
48
.
2.
Scobie
,
J. A.
,
Teuber
,
R.
,
Sheng Li
,
Y.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2015
, “
Design of an Improved Turbine Rim-Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022503
.
3.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford, UK
.
4.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2014
, “
Fluid Dynamics of a Gas Turbine Wheel-Space With Ingestion
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
508
524
.
5.
Cho
,
G.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Effect of Ingress on Turbine Disks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042502
.
6.
Mear
,
L. I.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Theoretical Model to Determine Effect of Ingress on Turbine Disks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032502
.
7.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals. Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
8.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals. Part 1: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
9.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.
10.
Owen
,
J. M.
,
Wu
,
K.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Cho
,
G.
, and
Lock
,
G. D.
,
2014
, “
Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032510
.
11.
Teuber
,
R.
,
Li
,
Y. S.
,
Maltson
,
J. D.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
2
), pp.
167
178
.
12.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
13.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.
14.
Graber
,
D. J.
,
Daniels
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disc Pumping Test, Final Report
,” Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH,
Report No. AFWAL-TR-87-2050
.
15.
Daniels
,
W. A.
,
Johnson
,
B. V.
,
Graber
,
D. J.
, and
Martin
,
R. J.
,
1992
, “
Rim Seal Experiments and Analysis for Turbine Applications
,”
ASME J. Turbomach.
,
114
(
2
), pp.
426
432
.
16.
Balasubramanian
,
J.
,
Junnarkar
,
N.
,
Zhou
,
D. W.
,
Roy
,
R. P.
,
Kim
,
Y. W.
, and
Moon
,
H. K.
,
2011
, “
Experiments on Aft-Disk Cavity Ingestion in a Model 1.5-Stage Axial-Flow Turbine
,”
ASME
Paper No. GT2011-45895.
17.
Bohn
,
D. E.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 99-GT-248.
18.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor–Stator WheelSpaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.
19.
Coren
,
D. D.
,
Atkins
,
N. R.
,
Turner
,
J. R.
,
Eastwood
,
D. E.
,
Davis
,
S.
,
Childs
,
P. R. N.
,
Dixon
,
J. A.
, and
Scanlon
,
T. J.
,
2013
, “
An Advanced Multiconfiguration Stator Well Cooling Test Facility
,”
ASME J. Turbomach.
,
135
(
1
), p.
011003
.
20.
Eastwood
,
D.
,
Coren
,
D. D.
,
Long
,
C. A.
,
Atkins
,
N. R.
,
Childs
,
P. R. N.
,
Scanlon
,
T. J.
, and
Guijarro-Valencia
,
A.
,
2012
, “
Experimental Investigation of Turbine Stator Well Rim Seal, Re-Ingestion and Interstage Seal Flows Using Gas Concentration Techniques and Displacement Measurements
,”
ASME J. Turbomach.
,
134
(
8
), p.
082501
.
21.
Guijarro-Valencia
,
A.
,
Dixon
,
J. A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Smith
,
P. E. J.
,
Munoz
,
J.
,
Eastwood
,
D.
,
Long
,
C. A.
,
Coren
,
D. D.
, and
Atkins
,
N. R.
,
2012
, “
An Investigation Into Numerical Analysis Alternatives for Predicting Re-Ingestion in Turbine Disc Rim Cavities
,”
ASME
Paper No. GT2012-68592.
22.
Palafox
,
P.
,
Ding
,
Z.
,
Bailey
,
J.
,
Vanduser
,
T.
,
Kirtley
,
K.
,
Moore
,
K.
, and
Chupp
,
R.
,
2013
, “
A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part I: Experimental Test Vehicle, Measurement Capability and Baseline Results
,”
ASME
Paper No. GT2013-96020.
23.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME
Paper No. GT2014-25570.
24.
Green
,
B. R.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2014
, “
Time-Averaged and Time-Accurate Aerodynamic Effects of Rotor Purge Flow for a Modern, One and One-Half Stage High-Pressure Turbine—Part II: Analytical Flow Field Analysis
,”
ASME J. Turbomach.
,
136
(
1
), p.
011009
.
25.
Khilnani
,
V. I.
, and
Bhavnani
,
S. H.
,
2001
, “
Sealing of Gas Turbine Disk Cavities Operating in the Presence of Mainstream External Flow
,”
Exp. Therm. Fluid Sci.
,
25
(
3–4
), pp.
163
173
.
26.
Scobie
,
J. A.
,
2014
, “
An Experimental Study of Gas Turbine Rim Seals
,”
Ph.D. thesis
, University of Bath, Bath, UK.
27.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems
(Rotor-Stator Systems, Vol.
1
),
Research Studies Press
,
Taunton, UK
.
28.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.
29.
Daily
,
J. W.
,
Ernst
,
W. D.
, and
Asbendian
,
V. V.
,
1964
, “
Enclosed Rotating Discs With Superposed Through-Flow: Mean Steady and Periodic Unsteady Characteristics of Induced Flow
,” MIT Department of Civil Engineering, Hydrodynamics Laboratory, Cambridge, MA, Report No. 64.
You do not currently have access to this content.