Pilot flames have been widely used for flame stabilization in low-emission gas turbine combustors. Effects of pilot flame on dynamic instabilities, however, are not well understood. In this work, the dynamic interactions between main and pilot flames are studied by perturbing both flames simultaneously, i.e., with a dual-input forcing. A burner is used to generate a premixed axisymmetric V-shaped methane flame stabilized by a central pilot flame. Servo valve and sirens are used to produce forcing in the pilot and main flames, respectively. A diagnostic system is applied to measure the flame structure and heat release rate. The effects of forcing frequency, forcing amplitude, phase difference between the two forcing signals as well as the Reynolds number are studied. Both the flame transfer function (FTF) and the flame dynamic position are measured and analyzed. It is found that the total flame response can be modified by the perturbation in the pilot flame. The mechanism can be attributed to the effect of pilot flame on the velocity field of the burnt side. Vortex is found to be able to amplify the pilot–main dynamic interactions under certain conditions. An analytical model is developed based on the linearized G-equation, to further understand the flame interactions through the velocity perturbations in the burnt side. Good agreements were found between the prediction and the experiment results.

References

1.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.
2.
Farber
,
J.
,
Koch
,
R.
,
Bauer
,
H. J.
,
Hase
,
M.
, and
Kerbs
,
W.
,
2009
, “
Effects of Pilot Fuel and Liner Cooling on the Flame Structure in a Full Scale Swirl-Stabilized Combustion Setup
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), pp.
277
286
.
3.
Albrecht
,
P.
,
Bade
,
S.
,
Lacarelle
,
A.
,
Paschereit
,
C. O.
, and
Gutmark
,
E.
,
2010
, “
Instability Control by Premixed Pilot Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041501
.
4.
Bhagwan
,
R.
,
Zarzalis
,
N.
,
Habisreuther
,
P.
, and
Zarzalis
,
N.
,
2014
, “
Experimental Investigation on Lean Blow Out of a Piloted Aero-Engine Burner
,”
ASME
Paper No. GT 2014-25199.
5.
Kumaran
,
K.
, and
Shet
,
U. S. P.
,
2007
, “
Effect of Swirl on Lean Flame Limits of Pilot-Stabilized Open Premixed Turbulent Flames
,”
Combust. Flame
,
151
(
1–2
), pp.
391
395
.
6.
Levy
,
Y.
,
Gany
,
A.
,
Goldman
,
Y.
,
Erenburg
,
V.
,
Sherbaum
,
V.
,
Ovcharenko
,
V.
,
Rosentsvit
,
L.
,
Chudnovsky
,
B.
,
Herszage
,
A.
, and
Talanker
,
A.
,
2010
, “
Increasing Operational Stability in Low NOx GT Combustor by a Pilot Flame
,”
ASME
Paper No. GT 2010-22785.
7.
Chaudhuri
,
S.
, and
Cetegen
,
B. M.
,
2009
, “
Response Dynamics of Bluff-Body Stabilized Conical Premixed Turbulent Flames With Spatial Mixture Gradients
,”
Combust. Flame
,
156
(
3
), pp.
706
720
.
8.
Kopp-Vaughan
,
K. M.
,
Jensen
,
T. R.
,
Cetegen
,
B. M.
, and
Renfro
,
M. W.
,
2013
, “
Analysis of Blowoff Dynamics From Flames With Stratified Fueling
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1491
1498
.
9.
Tuttle
,
S. G.
,
Chaudhuri
,
S.
,
Kopp-Vaughan
,
K. M.
,
Jensen
,
T. R.
,
Cetegen
,
B. M.
,
Renfro
,
M. W.
, and
Cohen
,
J. M.
,
2013
, “
Lean Blowoff Behavior of Asymmetrically-Fueled Bluff Body-Stabilized Flames
,”
Combust. Flame
,
160
(
9
), pp.
1677
1692
.
10.
Han
,
Z.
,
Balusamy
,
S.
, and
Hochgreb
,
S.
,
2014
, “
Spatial Analysis on Forced Heat Release Response of Turbulent Stratified Flames
,”
ASME
Paper No. GT 2014-26260.
11.
Bahr
,
D. W.
, and
Gleason
,
C. C.
,
1975
, “
Experimental Clean Combustor Program Phase I Final Report
,” General Electronic Company, Evendale, OH, Report No. NASA CR-134732.
12.
Mongia
,
H.
,
2003
, “
TAPS: A Fourth Generation Propulsion Combustor Technology for Low Emissions
,”
AIAA
Paper No. 2003-2657.
13.
Pitsch
,
H.
, and
Steiner
,
H.
,
2000
, “
Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D)
,”
Phys. Fluids
,
12
(
10
), pp.
2541
2554
.
14.
Barlow
,
R. S.
,
Meares
,
S.
,
Magnotti
,
G.
,
Cutcher
,
H.
, and
Masri
,
A. R.
,
2015
, “
Local Extinction and Near-Field Structure in Piloted Turbulent CH4/Air Jet Flames With Inhomogeneous Inlets
,”
Combust. Flame
,
162
(
10
), pp.
3516
3540
.
15.
Lieuwen
,
T.
,
2013
,
Unsteady Combustor Physics
,
Cambridge University Press
,
New York
.
16.
Dowling
,
A.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
17.
Nair
,
S.
, and
Lieuwen
,
T.
,
2003
, “
Acoustic Detection of Imminent Blowout in Pilot and Swirl Stabilized Combustors
,”
ASME
Paper No. GT 2003-38074.
18.
Paschereit
,
C. O.
,
Flohr
,
P.
, and
Gutmark
,
E. J.
,
2006
, “
Combustion Control by Vortex Breakdown Stabilization
,”
ASME J. Turbomach.
,
128
(
4
), p.
679C688
.
19.
Kendrick
,
D. W.
,
Anderson
,
T. J.
,
Sowa
,
W. A.
, and
Snyder
,
T. S.
,
1999
, “
Acoustic Sensitivities of Lean-Premixed Fuel Injectors in a Single Nozzle Rig
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
429
436
.
20.
Bradley
,
D.
,
Gaskell
,
P. H.
,
Gu
,
X. J.
,
Lawes
,
M.
, and
Scott
,
M. J.
,
1998
, “
Premixed Turbulent Flame Instability and NO Formation in a Lean-Burn Swirl Burner
,”
Combust. Flame
,
115
(
4
), pp.
515
538
.
21.
Lin
,
K. C.
,
Kennedy
,
P. J.
,
Donbar
,
J. M.
,
Jackson
,
T. A.
, and
Carter
,
C. D.
,
2000
, “
Active Combustion Control for Diffusion Flames Using an Integrated Fuel Injector/Flameholder Device
,”
AIAA
Paper No. 2000-3349.
22.
Sengissen
,
A. X.
,
Giauque
,
A. V.
,
Staffelbach
,
G. S.
,
Porta
,
M.
,
Krebs
,
W.
,
Kaufmann
,
P.
, and
Poinsot
,
T. J.
,
2007
, “
Large Eddy Simulation of Piloting Effects on Turbulent Swirling Flames
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
1729
1736
.
23.
Dhanuka
,
S. K.
,
Temme
,
J. E.
,
Driscoll
,
J. F.
, and
Mongia
,
H. C.
,
2009
, “
Vortex-Shedding and Mixing Layer Effects on Periodic Flashback in a Lean Premixed Prevaporized Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2901
2908
.
24.
Dhanuka
,
S. K.
, and
Temme
,
J. E.
,
2010
, “
Unsteady Aspects of Lean Premixed-Prevaporized Gas Turbine Combustors: Flame-Flame Interactions
,”
J. Propul. Power
,
27
(
3
), pp.
631
641
.
25.
Fu
,
X.
,
Yang
,
F.
, and
Guo
,
Z.
,
2015
, “
Combustion Instability of Pilot Flame in a Pilot Bluff Body Stabilized Combustor
,”
Chin. J. Aeronaut.
,
28
(
6
), pp.
1606
1615
.
26.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.
27.
Boyer
,
L.
, and
Quinard
,
J.
,
1990
, “
On the Dynamics of Anchored Flames
,”
Combust. Flame
,
82
(
1
), p. 51C65.
28.
Li
,
C.
,
Tang
,
H.
,
Jing
,
L.
, and
Zhu
,
M.
,
2015
, “
Investigations of the Stabilities of Piloted Flames Using Blast Furnace Gas
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031505
.
29.
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2010
,
Turbulent Flame Speed Measurements and Modeling of Syngas Fuels
,
Georgia Institute of Technology
, Atlanta, GA.
30.
Tang
,
H.
,
Yang
,
D.
,
Zhang
,
T.
, and
Zhu
,
M.
,
2013
, “
Characteristics of Flame Modes for a Conical Bluff Body Burner With a Central Fuel Jet
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091507
.
You do not currently have access to this content.