Auxiliary power unit (APU) operators face increasingly stricter airport requirements concerning exhaust gas and noise emission levels. To simultaneously reduce exhaust gas and noise emissions and to satisfy the increasing demand of electric power on board, optimization of the current technology is necessary. Prior to any possible demonstration of optimization potential, detailed data of thermodynamic properties and emissions have to be determined. Therefore, the investigations presented in this paper were conducted at a full-scale APU of an operational aircraft. A Pratt & Whitney (East Hartford, CT) APS3200, commonly installed in the Airbus A320 aircraft family, was used for measurements of the reference data. In order to describe the APS3200, the full spectrum of feasible power load and bleed air mass flow combinations were adjusted during the study. Their effect on different thermodynamic and performance properties, such as exhaust gas temperature, pressure as well as electric and overall efficiency is described. Furthermore, the mass flows of the inlet air, exhaust gas, and fuel input were determined. Additionally, the work reports the exhaust gas emissions regarding the species CO2, CO, and NOx as a function of load point. Moreover, the acoustic noise emissions are presented and discussed. With the provided data, the paper serves as a database for validating numerical simulations and provides a baseline for current APU technology.

References

3.
Stohlgren
,
L. M.
, and
Werner
,
L. D.
,
1986
, “
The GTCP36-300, a Gas Turbine Auxiliary Power Unit for Advanced Technology Transport Aircraft
,”
ASME
Paper No. 86-GT-285.
4.
Kinsey
,
J. S.
,
Timko
,
M. T.
,
Herndon
,
S. C.
,
Wood
,
E. C.
,
Yu
,
Z.
,
Miake-Lye
,
R. C.
,
Lobo
,
P.
,
Whitefield
,
P.
,
Hagen
,
D.
,
Wey
,
C.
,
Anderson
,
B. E.
,
Beyersdorf
,
A. J.
,
Hudgins
,
C. H.
,
Thornhill
,
K. L.
,
Winstead
,
E.
,
Howard
,
R.
,
Bulzan
,
D. I.
,
Tacina
,
K. B.
, and
Knighton
,
W. B.
,
2012
, “
Determination of the Emissions From an Aircraft Auxiliary Power Unit (APU) During the Alternative Aviation Fuel Experiment (AAFEX)
,”
J. Air Waste Manage. Assoc.
,
62
(
4
), pp.
420
430
.
5.
Crayford
,
A.
,
Marsh
,
M. J. R.
,
Sevcenco
,
Y.
,
Walters
,
D.
,
Williams
,
P.
,
Petzold
,
A.
,
Bowen
,
P.
,
Wang
,
J.
, and
Lister
,
D.
,
2011
, “
SAMPLE III SC.02—Studying, Sampling and Measuring of aircraft Particulate Emissions III: Specific Contract 01 (SAMPLE III—SC.01)
,” European Aviation Safety Agency (EASA), Cologne, Germany, Technical Report No.
EASA.2010.FC.10
.https://www.researchgate.net/publication/266895746_SAMPLE_III_-_Studying_sAmpling_and_Measuring_of_aircraft_ParticuLate_Emission_III_-_First_Specific_Contract_-_Final_Report
6.
Lobo
,
P.
,
Christie
,
S.
,
Khandelwal
,
B.
,
Blakey
,
S. G.
, and
Raper
,
D. W.
,
2015
, “
Evaluation of Non-Volatile Particulate Matter Emission Characteristics of an Aircraft Auxiliary Power Unit With Varying Alternative Jet Fuel Blend Ratios
,”
Energy Fuels
,
29
(
11
), pp.
7705
7711
.
7.
ICAO,
2011
, “
Airport Air Quality Manual—Doc 9889
,” International Civil Aviation Organization, Montreal, QC, Canada,
Technical Report
.https://www.icao.int/environmental-protection/Documents/Publications/FINAL.Doc%209889.1st%20Edition.alltext.en.pdf
8.
Tam
,
C.
,
Pastouchenko
,
N.
,
Mendoza
,
J.
, and
Brown
,
D.
,
2005
, “
Combustion Noise of Auxiliary Power Units
,”
AIAA
Paper No. 2005-2829.
9.
Tam
,
C.
,
Parrish
,
S.
,
Xu
,
J.
, and
Schuster
,
B.
,
2013
, “
Indirect Combustion Noise of Auxiliary Power Units
,”
J. Sound Vib.
,
332
(17), pp.
4004
4020
.
10.
Pott-Pollenske
,
M.
,
Dobrzynski
,
W.
,
Buchholz
,
H.
, and
Almoneit
,
D.
,
2007
, “
Characteristics of Noise From Aircraft Ground Operations
,”
AIAA
Paper No. 2007-3560.
11.
Knobloch
,
K.
,
Busse-Gerstengarbe
,
S.
,
Fischer
,
A.
,
Bake
,
F.
, and
Enghardt
,
L.
,
2014
, “
Full-Scale Tests on APU Noise Reduction
,”
ASME
Paper No. GT2014-26803.
12.
Cerbe
,
G.
,
1992
,
Grundlagen Der Gastechnik
, 4th ed.,
Carl Hanser Verlag
,
Munich, Germany
.
13.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Performance Analysis of the Micro Gas Turbine Turbec t100 With a New Flox-Combustion System for Low Calorific Fuels
,”
Appl. Energy
,
159
, pp.
276
284
.
14.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Wiley
,
New York
.
15.
do Nascimento
,
M.
,
de Oliveira Rodrigues
,
L.
,
dos Santos
,
E.
,
Batista Gomes
,
E.
,
Goulart Dias
,
F.
,
Gutiérrez Velásques
,
E.
, and
Miranda Carrillo
,
R.
,
2013
, “
Micro Gas Turbine Engine: A Review
,”
Progress in Gas Turbine Performance
,
InTech
,
Rijeka, Croatia
.
16.
BMU,
2002
, “
TA-Luft: Erste Allgemeine Verwaltungsvorschrift Zum Bundes–Immissionsschutzgesetz
,” Bundesministerium für Umwelt, Berlin, Technical Report.
17.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
GAS Turbine Combustion Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
18.
Joos
,
F.
,
2006
,
Technische Verbrennung—Verbrennungstechnik, Verbrennungsmodellierung, Emissionen
,
Springer
,
Berlin
.
19.
Schäfer
,
K.
,
Jahn
,
C.
,
Sturm
,
P.
,
Lechner
,
B.
, and
Bacher
,
M.
,
2003
, “
Aircraft Emission Measurements by Remote Sensing Methodologies at Airports
,”
Atmos. Environ.
,
37
(
37)
, pp.
5261
5271
.
You do not currently have access to this content.