Composite cycle engines comprising piston engines (PEs) as well as piston compressors (PCs) to achieve hecto pressure ratios represent a target area of current research surpassing gas turbine efficiency. An unclear broad range of design parameters is existing to describe the design space of piston machines for this type of engine architecture. Previously published work focuses on thermodynamic studies only partially considering limitations of the design space. To untie the problem of PE design, a dimensional analysis is carried out reducing the number of parameters and deriving two basic similarity relations. The first one is a function of the mean effective pressure as well as the operating mode and is a direct result from the thermodynamic cycle. The second one is constituted of the stroke-to-bore ratio and the ratio of effective power to piston surface. Similarity relations regarding the PC design are based on Grabow (1993, “Das erweiterte “Cordier”—Diagramm Für Fluidenergiemaschinen und Verbrennungsmotoren,” Forsch. Ingenieurwes., 59, pp. 42–50). A further correlation for PCs is based on the specific compression work and the piston speed. In Part I, data of existing PEs have been subjected to the above similarity parameters unveiling the state-of-the-art design space. This allows a first discussion of current technological constraints. Applying this result to the composite cycle engine gives the design space and a first classification as a low-speed engine. Investigating various design points in terms of number and displacement volume of cylinders confirms the engine speed classification. Part II will expand this investigation using preliminary design studies.

References

1.
IATA
,
2013
, “
Reducing Emissions From Aviation Through Carbon-Neutral Growth From 2020
,”
38th International Civil Aviation Organization Assembly
, Montréal, QC, Canada, Sept. 24–Oct. 4.
2.
ACARE
,
2012
, “
Flightpath 2050: Europe's Vision for Aviation; Maintaining Global Leadership and Serving Society's Needs
,” Report of the High-Level Group on Aviation Research, Policy/European Commission, Publication Office of the European Union,
Luxembourg
.
3.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME
Paper No. GT2009-59745.
4.
Bellocq
,
P.
,
Garmendia
,
I.
, and
Sethi
,
V.
,
2015
, “
Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part I: Low Pressure System Design Choices, Engine Preliminary Design Philosophy and Modelling Methodology
,”
ASME
Paper No. GT2015-43812.
5.
Bellocq
,
P.
,
Garmendia
,
I.
, and
Sethi
,
V.
,
2015
, “
Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part II: Impact of Low Pressure System Design on Mission Fuel Burn, Certification Noise and Emissions
,”
ASME
Paper No. GT2015-43816.
6.
Van Zante
,
D. E.
,
2015
, “
Progress in Open Rotor Research: A U.S. Perspective
,”
ASME
Paper No. GT2015-42203.
7.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Rodriguez Lucas
,
F.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072602
.
8.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Rodriguez Lucas
,
F.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part II: Impact on Fuel Consumption, Engine Weight, Certification Noise, and Nox Emissions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072603
.
9.
Steiner
,
H.-J.
,
Seitz
,
A.
,
Wieczorek
,
K.
,
Plötner
,
K.
,
Isikveren
,
A.
, and
Hornung
,
M.
,
2012
, “
Multi-Disciplinary Design and Feasibility Study of Distributed Propulsion Systems
,”
28th International Congress of the Aeronautical Sciences
(
ICAS
), Brisbane, Australia, Sept. 23–28.
10.
Laskaridis
,
P.
,
Valencia
,
E.
,
Kirner
,
R.
, and
Wei
,
T. J.
,
2015
, “
Assessment of Distributed Propulsion Systems Used With Different Aircraft Configurations
,”
AIAA
Paper No. 2015-4029.
11.
Wick
,
A. T.
,
Hooker
,
J. R.
, and
Zeune
,
C. H.
,
2015
, “
Integrated Aerodynamic Benefits of Distributed Propulsion
,”
AIAA
Paper No. 2015-1500.
12.
Schmidt
,
F.
,
Staudacher
,
S.
, and
Weigand
,
B.
,
2013
, “
Generalized Analysis of the Potential of Thermodynamic Cycles for Future Aircraft Propulsion Systems
,” Deutscher Luft- und Raumfahrtkongress, Stuttgart, Germany, Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Paper No. DLRK-2013-301350.
13.
Grönstedt
,
T.
,
Irannezhad
,
M.
,
Lei
,
X.
,
Thulin
,
O.
, and
Lundbladh
,
A.
,
2014
, “
First and Second Law Analysis of Future Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031202
.
14.
Schmidt
,
F.
, and
Staudacher
,
S.
,
2015
, “
Generalized Thermodynamic Assessment of Concepts for Increasing the Efficiency of Civil Aircraft Propulsion Systems
,”
ASME
Paper No. GT2015-42447.
15.
Camilleri
,
W.
,
Anselmi
,
E.
,
Sethi
,
V.
,
Laskaridis
,
P.
,
Rolt
,
A.
, and
Cobas
,
P.
,
2015
, “
Performance Characteristics and Optimisation of a Geared Intercooled Reversed Flow Core Engine
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
229
(
2
), pp.
269
279
.
16.
Kyprianidis
,
K. G.
,
Rolt
,
A. M.
, and
Grönstedt
,
T.
,
2014
, “
Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011203
.
17.
Kyprianidis
,
K. G.
, and
Rolt
,
A. M.
,
2015
, “
On the Optimization of a Geared Fan Intercooled Core Engine Design
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041201
.
18.
Zhao
,
X.
,
Thulin
,
O.
, and
Grönstedt
,
T.
,
2016
, “
First and Second Law Analysis of Intercooled Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021202
.
19.
Nalim
,
M. R.
,
2002
, “
Thermodynamic Limits of Work and Pressure Gain in Combustion and Evaporation Processes
,”
J. Propul. Power
,
18
(
6
), pp.
1176
1182
.
20.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), p.
717
.
21.
Snyder
,
P. H.
, and
Nalim
,
M. R.
,
2012
, “
Pressure Gain Combustion Application to Marine and Industrial Gas Turbines
,”
ASME
Paper No. GT2012-69886.
22.
Hutchins
,
T. E.
, and
Metghalchi
,
M.
,
2003
, “
Energy and Exergy Analyses of the Pulse Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
1075
1080
.
23.
Goldmeer
,
J.
,
Tangirala
,
V.
, and
Dean
,
A.
,
2008
, “
System-Level Performance Estimation of a Pulse Detonation Based Hybrid Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011201
.
24.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part I: Early Development Activities
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
3
), pp.
139
157
.
25.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part II: Engine Design Studies Following Early Development Testing
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
3
), pp.
280
294
.
26.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part III: Engine Concepts for Reduced Emissions, Lower Fuel Consumption, and Noise Abatement
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
4
), pp.
408
426
.
27.
Vogeler
,
K.
,
1998
, “
The Potential of Sequential Combustion for High Bypass Jet Engines
,”
ASME
Paper No. 98-GT-311.
28.
Klein
,
F.
, and
Staudacher
,
S.
,
2017
, “
Plausibility Study of Hecto Pressure Ratio Concepts in Large Civil Aero Engines
,”
ASME
Paper No. GT2017-64214.
29.
FlightGlobal
,
1954
, “
Napier Nomad—An Engine of Outstanding Efficiency
,”
Flight Global
,
M. A.
Smith
, ed.,
FlightGlobal
,
Sutton, UK
, pp.
543
552
.
30.
Gunston
,
B.
,
2006
,
World Encyclopedia of Aero Engines: From the Pioneers to the Present Day
, 5th ed.,
Sutton Publishing
,
Stroud, UK
.
31.
Civinskas
,
K. C.
, and
Kraft
,
G. A.
,
1976
, “
Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TM-X-71906
.
32.
Castor
,
J.
,
1983
, “
Compound Cycle Turbofan Engine
,”
AIAA
Paper No. 1983-1338.
33.
Willis
,
E.
, and
Wintucky
,
W.
,
1984
, “
An Overview of NASA Intermittent Combustion Engine Research
,”
AIAA
Paper No. 1984-1393.
34.
Andre
,
W.
,
1985
, “
Aircraft Preliminary Design Comparison of Advanced Compound Engines With Advanced Turbine Engines for Helicopter Applications
,”
AIAA
Paper No. 1985-1276.
35.
Castor
,
J.
,
Martin
,
J.
, and
Bradley
,
C.
,
1987
, “
Compound Cycle Engine for Helicopter Application
,” National Aeronautics and Space Administration, Cleveland, OH, Technical Report No.
NASA CR-180824
.
36.
Adleff
,
K.
,
Kamossa
,
K.
, and
Kley
,
M.
,
2014
, “
Turbo-Compound-Systeme an Nutzfahrzeugmotoren—Anforderungen, Nutzen und Innovative Lösungsansätze
,”
Internationaler Motorenkongress 2014
,
J.
Liebl
, ed., pp.
403
415
.
37.
Pescara Raul
,
P.
,
1942
, “Means for Driving the Propelling System of Aircraft,” U.S. Patent No. U.S. 2292288 A.
38.
Pescara Raul
,
P.
,
1940
, “Free Piston Machine,” U.S. Patent No. US2189497 A.
39.
Gersdorff
,
K. V.
,
Grasmann
,
K.
, and
Benecke
,
T.
,
1981
,
Flugmotoren Und Strahltriebwerke: Entwicklungsgeschichte Der Deutschen Luftfahrtantriebe Von Den Anfängen Bis Zu Den Europäischen Gemeinschaftsentwicklungen
(Die Deutsche Luftfahrt), Vol.
2
,
Munich, Germany
.
40.
Whurr
,
J.
,
1997
, “Aircraft Compound Cycle Propulsion Engine,” Rolls-Royce PLC, Westhampnett, UK, U.S. Patent No.
US5692372 A
.
41.
Robinson
,
J. C. J.
,
2007
, “Gasturbinentriebwerk,” MTU Aero Engines GmbH, Munich, Germany, Patent No. DE102006015928A1.
42.
Klingels
,
H.
,
2013
, “Wärmekraftmaschine Mit Freikolbenverdichter,” MTU Aero Engines GmbH, Munich, Germany, Patent No. DE102012206123A1.
43.
Gauvreau
,
J. G.
, and
Gagnon-Martin
,
D.
,
2014
, “Wankel Engine Rotor,” Patent No. CA2834082 A1.
44.
Kaiser
,
S.
,
Seitz
,
A.
,
Donnerhack
,
S.
, and
Lundbladh
,
A.
,
2016
, “
Composite Cycle Engine Concept With Hectopressure Ratio
,”
J. Propul. Power
,
32
(
6
), pp.
1413
1421
.
45.
Panting
,
J. R.
, and
Pullen
,
K. R.
,
2000
, “
Thermodynamic Studies of a Novel Aeroengine Concept
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
214
(
2
), pp.
71
83
.
46.
Nickl
,
M.
,
Kaiser
,
S.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2016
, “
Performance Modeling of a Composite Cycle Engine With Rotary Engine
,” Deutscher Luft- und Raumfahrtkongress, Braunschweig, Germany, Sept. 13–15, Paper No.
DLRK-2016-420144
.
47.
Berg
,
H. P.
,
Himmelberg
,
A.
,
Malenky
,
U.
,
Meincke
,
M.
, and
Soontornpasatch
,
T.
,
2016
, “
Hybrides Turbo Compound Fan Triebwerk
,” Deutscher Luft- und Raumfahrtkongress, Braunschweig, Germany, Sept. 13–15, Paper No. DLRK-2016-420246.
48.
Maass
,
H.
,
1979
,
Gestaltung Und Hauptabmessungen Der Verbrennungskraftmaschine
(Die Verbrennungskraftmaschine. Neue Folge, Vol. 1),
Springer
,
Vienna, Austria
.
49.
Schrön
,
H.
,
1947
,
Die Dynamik Der Verbrennungskraftmaschine
, 2nd ed. (Die Verbrennungskraftmaschine, Grundlagen zur Gestaltung von Verbrennungskraftmaschinen, Vol. 8),
Springer
,
Berlin, Heidelberg
.
50.
Simon
,
V.
,
Weigand
,
B.
, and
Gomaa
,
H.
,
2017
,
Dimensional Analysis for Engineers
,
Springer International Publishing
,
Cham, Switzerland
.
51.
Pischinger
,
R.
,
Klell
,
M.
, and
Sams
,
T.
,
2009
,
Thermodynamik Der Verbrennungskraftmaschine
, 3rd ed. (Der Fahrzeugantrieb),
Springer
,
Vienna, Austria
.
52.
Köhler
,
E.
, and
Flierl
,
R.
,
2012
,
Verbrennungsmotoren: Motormechanik, Berechnung Und Auslegung Des Hubkolbenmotors
, 6th ed. (ATZ/MTZ-Fachbuch),
Vieweg+Teubner Verlag
,
Wiesbaden, Germany
.
53.
Van Basshuysen
,
R.
, and
Schäfer
,
F.
,
2015
,
Handbuch Verbrennungsmotor
,
Springer Vieweg
,
Wiesbaden, Germany
.
54.
BMW Presseinformation
, 2017, “Technische Daten,” BMW Group, Munich, Germany, accessed May 17, 2017, https://www.press.bmwgroup.com/global
55.
Waltner
,
A.
,
Lückert
,
P.
,
Doll
,
G.
, and
Kemmler
,
R.
,
2010
, “
Der Neue 3,5-l-V6-Ottomotor Mit Direkteinspritzung Von Mercedes-Benz
,”
Motortech. Z.
,
71
(
9
), pp.
576
585
.
56.
Bauder
,
A.
,
Krause
,
W.
,
Mann
,
M.
,
Pischke
,
R.
, and
Pölzl
,
H.-W.
,
1999
, “
Die Neuen V8-Ottomotoren Von Audi Mit Fünfventiltechnik
,”
Motortech. Z.
,
60
(
1
), pp.
8
21
.
57.
Frigge
,
P.
,
Affolter
,
S.
,
Bachmann
,
D.
, and
Jong
,
R.
,
2011
, “
Neue Zweitakt-Schiffsdieselmotoren Von Waertsilae
,”
Motortech. Z.
,
72
(
11
), pp.
846
853
.
58.
Volvo Trucks
, 2017, “Technische Daten Antriebsstrang,” Volvo Group, Ismaning, Germany, accessed May 8, 2017, http://www.volvotrucks.de/de-de/trucks/volvo-fh-series/specifications.html
59.
Schubert
,
H.
,
1999
,
Deutsche Triebwerke: Flugmotoren Und Strahltriebwerke Von 1934 Bis 1999
, 3rd ed.,
Aviatic-Verlag
,
Oberhaching, Germany
.
60.
Mollenhauer
,
K.
, and
Tschöke
,
H.
, eds.,
2007
,
Handbuch Dieselmotoren
, 3rd ed.,
Springer-Verlag
,
Berlin
.
61.
Steigenberger
,
O.
,
1943
, “
Vergleichende Wertung Von Flugmotoren
,”
Motortech. Z.
,
5
(
11/12
), pp.
361
368
.
62.
Miles
,
P. C.
, and
Andersson
,
Ö.
,
2016
, “
A Review of Design Considerations for Light-Duty Diesel Combustion Systems
,”
Int. J. Engine Res.
,
17
(
1
), pp.
6
15
.
63.
Filipi
,
Z. S.
, and
Assanis
,
D. N.
,
2000
, “
The Effect of the Stroke-to-Bore Ratio on Combustion, Heat Transfer and Efficiency of a Homogeneous Charge Spark Ignition Engine of Given Displacement
,”
Int. J. Engine Res.
,
1
(
2
), pp.
191
208
.
64.
Lutz
,
O.
,
1933
, “
Ähnlichkeitsbetrachtungen Bei Brennkraftmaschinen
,”
Ing.-Archiv
,
IV
(
4
), pp.
373
383
.
65.
Sanden
,
K. v.
,
1932
, “
Kennzahlen Für Schnelläufigkeit Und Leistungsgewicht Von Brennkraftmaschinen
,”
Ing.-Archiv
,
III
(
3
), pp.
311
318
.
66.
Kutzbach
,
K.
,
1921
, “
Fortschritte Und Probleme Der Mechanischen Energieumformung
,”
Z. VDI
,
65
(51), p.
S.1301/2
.
67.
Grabow
,
G. H.
,
1993
, “
Das Erweiterte “Cordier”—Diagramm Für Fluidenergiemaschinen Und Verbrennungsmotoren
,”
Forsch. Ingenieurwes.
,
59
(
3
), pp.
42
50
.
68.
Bouché
,
C.
, and
Wintterlin
,
K.
,
1968
,
Kolbenverdichter: Einführung in Arbeitsweise, Bau Und Betrieb Von Luft- Und Gasverdichtern Mit Kolbenbewegung
, 4th ed.,
Springer
,
Berlin, Heidelberg
.
69.
Küttner
,
K.-H.
,
1992
,
Kolbenverdichter: Mit 32 Tabellen
,
Springer
,
Berlin
.
70.
Grote
,
K.-H.
, and
Feldhusen
,
J.
,
2007
,
Dubbel: Taschenbuch Für Den Maschinenbau
, 22nd ed.,
Springer
,
Berlin, Heidelberg
.
71.
Cordier
,
O.
,
1953
, “
Ähnlichkeitsbedingungen Für Strömungsmaschinen
,”
BWK Z.
,
5
(10), pp.
337
340
.
You do not currently have access to this content.