Many laboratory-scale combustors are equipped with viewing windows to allow for characterization of the reactive flow. Additionally, pressure housing is used in this configuration to study confined pressurized flames. Since the flame characteristics are influenced by heat losses, the prediction of wall temperature fields becomes increasingly necessary to account for conjugate heat transfer (CHT) in simulations of reactive flows. For configurations similar to this one, the pressure housing makes the use of such computations difficult in the whole system. It is, therefore, more appropriate to model the external heat transfer beyond the first set of quartz windows. The present study deals with the derivation of such a model, which accounts for convective heat transfer from quartz windows external face cooling system, free convection on the quartz windows 2, quartz windows radiative properties, radiative transfer inside the pressure housing, and heat conduction through the quartz window. The presence of semi-transparent viewing windows demands additional care in describing its effects in combustor heat transfers. Because this presence is not an issue in industrial-scale combustors with opaque enclosures, it remains hitherto unaddressed in laboratory-scale combustors. After validating the model for the selected setup, the sensitivity of several modeling choices is computed. This enables a simpler expression of the external heat transfer model that can be easily implemented in coupled simulations.
Skip Nav Destination
Article navigation
March 2019
Research-Article
Assessment of External Heat Transfer Modeling of a Laboratory-Scale Combustor: Effects of Pressure-Housing Environment and Semi-Transparent Viewing Windows
P. Rodrigues,
P. Rodrigues
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Search for other works by this author on:
O. Gicquel,
O. Gicquel
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Search for other works by this author on:
N. Darabiha,
N. Darabiha
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Search for other works by this author on:
K. P. Geigle,
K. P. Geigle
German Aerospace Center (DLR),
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
Search for other works by this author on:
R. Vicquelin
R. Vicquelin
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
e-mail: ronan.vicquelin@centralesupelec.fr
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
e-mail: ronan.vicquelin@centralesupelec.fr
Search for other works by this author on:
P. Rodrigues
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
O. Gicquel
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
N. Darabiha
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
K. P. Geigle
German Aerospace Center (DLR),
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
R. Vicquelin
Laboratoire EM2C, CNRS, CentraleSupélec,
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
e-mail: ronan.vicquelin@centralesupelec.fr
Université Paris-Saclay,
8-10 Rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France
e-mail: ronan.vicquelin@centralesupelec.fr
1Corresponding author.
Manuscript received July 13, 2018; final manuscript received July 30, 2018; published online October 4, 2018. Assoc. Editor: Michael Mueller.
J. Eng. Gas Turbines Power. Mar 2019, 141(3): 031011 (10 pages)
Published Online: October 4, 2018
Article history
Received:
July 13, 2018
Revised:
July 30, 2018
Citation
Rodrigues, P., Gicquel, O., Darabiha, N., Geigle, K. P., and Vicquelin, R. (October 4, 2018). "Assessment of External Heat Transfer Modeling of a Laboratory-Scale Combustor: Effects of Pressure-Housing Environment and Semi-Transparent Viewing Windows." ASME. J. Eng. Gas Turbines Power. March 2019; 141(3): 031011. https://doi.org/10.1115/1.4041242
Download citation file:
Get Email Alerts
Cited By
Condenser Retrofit in Leibstadt Nuclear Power Plant (BWR) - Far Beyond a Standard Modular Solution
J. Eng. Gas Turbines Power
The Manufacturing and Experimental Validation of a Nickel Superalloy Double-Wall, Effusion Test Specimen
J. Eng. Gas Turbines Power
Prediction Enhancement of Machine Learning Using Time Series Modeling in Gas Turbines
J. Eng. Gas Turbines Power
Innovative Air Bypass System For Low-Emission Multi Can Combustors
J. Eng. Gas Turbines Power
Related Articles
Design and Characterization of a Novel Upward Flow Reactor for the Study of High-Temperature Thermal Reduction for Solar-Driven Processes
J. Sol. Energy Eng (October,2017)
Experimental Study and Modeling of the Intermediate Section of the Nonisothermal Constrained Vapor Bubble
J. Heat Transfer (February,1998)
Measuring the Thermal Conductivity of Porous, Transparent SiO 2 Films With Time Domain Thermoreflectance
J. Heat Transfer (June,2011)
An Experimental Apparatus and Procedure for the Simulation of Thermal Stresses in Gas Turbine Combustion Chamber Panels Made of Ceramic Matrix Composites
J. Eng. Gas Turbines Power (September,2017)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment