After almost 20 years of absence from research agendas, interest in the vertical axis wind turbine (VAWT) technology is presently increasing again, after the research stalled in the mid 90's in favor of horizontal axis wind turbines (HAWTs). However, due to the lack of research in past years, there are a significantly lower number of design and certification tools available, many of which are underdeveloped if compared to the corresponding tools for HAWTs. To partially fulfill this gap, a structural finite element analysis (FEA) model, based on the Open Source multiphysics library PROJECT::CHRONO, was recently integrated with the lifting line free vortex wake (LLFVW) method inside the Open Source wind turbine simulation code QBlade and validated against numerical and experimental data of the SANDIA 34 m rotor. In this work, some details about the newly implemented nonlinear structural model and its coupling to the aerodynamic solver are first given. Then, in a continuous effort to assess its accuracy, the code capabilities were here tested on a small-scale, fast-spinning (up to 450 rpm) VAWT. The study turbine is a helix shaped, 1 kW Darrieus turbine, for which other numerical analyses were available from a previous study, including the results coming from both a one-dimensional beam element model and a more sophisticated shell element model. The resulting data represented an excellent basis for comparison and validation of the new aero-elastic coupling in QBlade. Based on the structural and aerodynamic data of the study turbine, an aero-elastic model was then constructed. A purely aerodynamic comparison to experimental data and a blade element momentum (BEM) simulation represented the benchmark for QBlade aerodynamic performance. Then, a purely structural analysis was carried out and compared to the numerical results from the former. After the code validation, an aero-elastically coupled simulation of a rotor self-start has been performed to demonstrate the capabilities of the newly developed model to predict the highly nonlinear transient aerodynamic and structural rotor response.

References

1.
Damota
,
J.
,
Lamas
,
I.
,
Couce
,
A.
, and
Rodríguez
,
J.
,
2015
, “
Vertical Axis Wind Turbines: Current Technologies and Future Trends
,”
International Conference on Renewable Energies and Power Quality
(
ICREPQ'15
), La Coruña, Spain, Mar. 25–27, pp. 530–535.https://www.researchgate.net/publication/274318535_Vertical_Axis_Wind_Turbines_Current_Technologies_and_Future_Trends
2.
Sutherland
,
H. J.
,
Berg
,
D. E.
, and
Ashwill
,
T. D.
,
2012
, “
A Retrospective of VAWT Technology
,” Sandia National Laboratorie, Alburquerque, NM, Report No.
SAND2012-0304
.https://energy.sandia.gov/wp-content/gallery/uploads/SAND2012-0304.pdf
3.
Blonk
,
D. L.
,
2010
, “
Floating Vertical Axis Wind Turbines
,” MSc thesis, Delft University of Technology, Delft, The Netherlands.
4.
Schmidt Paulsen
,
U.
,
Madsen
,
H. A.
,
Hattel
,
J. H.
,
Baran
,
I.
, and
Nielsen
,
P. H.
,
2013
, “
Design Optimization of a 5 MW Floating Offshore Vertical-Axis Wind Turbine
,”
Energy Procedia
,
35
, pp.
22
32
.
5.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
.
6.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, QC, Canada
7.
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow
,”
Wind Eng.
,
36
(
6
), pp.
667
686
.
8.
Carbó Molina
,
A.
,
Bartoli
,
G.
, and
De Troyer
,
T.
,
2017
, “
Generation of Uniform Turbulence Profiles in the Wind Tunnel for Urban VAWT Testing
,”
Wind Energy Exploitation in Urban Environment. TUrbWind 2017 Colloquium
,
Springer
,
Berlin
.
9.
Möllerström
,
E.
,
Larsson
,
S.
,
Ottermo
,
F.
,
Hylander
,
J.
, and
Bååth
,
L.
,
2014
, “
Noise Propagation From a Vertical Axis Wind Turbine
,”
International Congress on Noise Control Engineering
, Melbourne, Australia, Nov. 16–19.
10.
Sharpe
,
T.
, and
Proven
,
G.
,
2010
, “
Crossflex: Concept and Early Development of a True Building Integrated Wind Turbine
,”
Energy Build.
,
42
(
12
), pp.
2365
2375
.
11.
Balduzzi
,
F.
,
Drofelnik
,
J.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Campobasso
,
M. S.
,
2017
, “
Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier-Stokes CFD Assessment
,”
Energy
,
128
, pp.
550
563
.
12.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.
13.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Persico
,
B.
, and
Dossena
,
V.
,
2018
, “
A Critical Analysis on Low-Order Simulation Models for Darrieus VAWTs: How Much Do They Pertain to the Real Flow?
,”
ASME
Paper No. GT2018-76623.
14.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2015
, “
Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p. 072601.
15.
Simão Ferreira
,
C.
,
Aagaard Madsen
,
H.
,
Barone
,
M.
,
Roscher
,
B.
,
Deglaire
,
P.
, and
Arduin
,
I.
,
2014
, “
Comparison of Aerodynamic Models for Vertical Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
,
524
, p.
012125
.
16.
Marten
,
D.
,
Bianchini
,
A.
,
Pechlivanoglou
,
G.
,
Balduzzi
,
F.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
,
Paschereit
,
C. O.
, and
Ferrari
,
L.
,
2016
, “
Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbines Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022606
.
17.
Rainbird
,
J.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.
18.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Virtual Incidence Effect on Rotating Airfoils in Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
111
, pp.
329
338
.
19.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2014
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), p.
011006
.
20.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Analysis Of Dynamic Stall Models In Low-Order Simulation Models For Vertical-Axis Wind Turbines
,”
Energy Procedia
,
101
, pp.
488
495
.
21.
IEC,
2013
, “
Design Requirements for Small Wind Turbines
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No.
IEC 61400-2
.https://webstore.iec.ch/preview/info_iec61400-2%7Bed2.0%7Den_d.pdf
22.
IEC
,
2009
, “
Design Requirements for Offshore Wind Turbines
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 61400-3.
23.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2016
, “
CHRONO: An Open Source Multi-Physics Dynamics Engine
,”
High Performance Computing in Science and Engineering: Second International Conference, HPCSE 2015, Soláň, Czech Republic, May 25–28, 2015, Revised Selected Papers (pp. 19–49)
(Lecture Notes in Computer Science 9611),
Springer
,
Berlin
, pp.
19
49
.
24.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBlade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(3), pp.
264
269
.https://ijetae.com/files/Conference%20ICERTSD-2013/IJETAE_ICERTSD_0213_41.pdf
25.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2017
, “
Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool
,”
ASME J. Fluids Eng.
,
140
(2), p. 021107.
26.
Marten
,
D.
,
2015
, “
QBlade Guidelines v0.95
,” Technical University of Berlin, Berlin, Technical Report No.
TUB-2015-1
.
27.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Paschereit
,
C. O.
,
Dy
,
N. V.
,
Paraschivoiu
,
I.
, and
Saeed
,
F.
,
2017
, “
Validation and Comparison of a Newly Developed Aeroelastic Design Code for VAWT
,”
AIAA
Paper No. AIAA 2017-0452.
28.
Bianchini
,
A.
,
Cangioli
,
F.
,
Papini
,
S.
,
Rindi
,
A.
,
Carnevale
,
E. A.
, and
Ferrari
,
L.
,
2015
, “
Structural Analysis of a Small H-Darrieus Wind Turbine Using Beam Models: Development and Assessment
,”
ASME J. Turbomach.
,
137
(
1
), p. 011003.
29.
PRAMAC S.p.A.
, 2018, “
Revolution Air Wind Turbines
,” PRAMAC S.p.A., Siena, Italy, Technical Report, accessed Oct. 29, 2018, http://www.liberamente.tv/img/pramac.pdf
30.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Schneider
,
A.
,
2008
, “
First Steps in the Design and Optimization of Darrieus VAWTs for Microeolic Applications
,”
World Renewable Energy Congress (WREC) X
, Glasgow, Scotland, July 19–25.
31.
Lowe
,
A. C.
,
Moore
,
D. R.
, and
Robinson
,
I. M.
,
1994
, “
Data for Designing With Continuous-Glass-Fibre-Reinforced Polypropylene
,”
Compos. Sci. Technol.
,
52
(
2
), pp.
205
216
.
32.
Pandit
,
S. N.
,
Gupta
,
V. B.
, and
Subramanian
,
K.
,
1981
, “
Compounding of Glass Fiber-Reinforced Polypropylene and Investigation of Its Mechanical Properties Under Simple and Complex Loading
,”
Polym. Compos.
,
2
(
2
), pp.
68
74
.
33.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield
,”
Energy Convers. Manage.
,
89
, pp.
690
707
.
34.
Marshall
,
L.
, and
Buhl
,
J.
, Jr.
,
2005
, “
A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-36834
.https://www.nrel.gov/docs/fy05osti/36834.pdf
35.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections
,
Dover Publications
,
New York
.
36.
Migliore
,
P. G.
,
Wolfe
,
W. P.
, and
Fanucci
,
J. B.
,
1980
, “
Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics
,”
J. Energy
,
4
(
2
), pp.
49
55
.
37.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 1: Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
38.
Linn
,
A. B.
,
1999
, “
Determination of Average Lift of a Rapidly Pitching Airfoil
,” MSc thesis, Worcester Polytechnic Institute, Worcester, MA.
39.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TM-82944
.https://ntrs.nasa.gov/search.jsp?R=19820025954
40.
Bianchini
,
A.
,
2011
, “
Performance Analysis and Optimization of a Darrieus VAWT
,” Ph.D. thesis, School of Energy Engineering and Innovative Industrial Technologies/University of Florence, Florence, Italy.
41.
Tasora
,
A.
,
2016
, “
Euler-Bernoulli Corotational Beams in CHRONO::Engine
,” CHRONO::Engine Technical Documentation, Università di Parma, Parma, Italy, accessed Feb. 19, 2018, http://www.projectchrono.org/assets/white_papers/FEA/euler_beams.pdf
42.
Recuero
,
A.
, and
Negrut
,
D.
,
2016
, “
Co-Rotational Formulation in CHRONO
,” ProjectCHRONO, Technical documentation, Università di Parma, Parma, Italy, accessed Feb. 19, 2018, http://www.projectchrono.org/assets/white_papers/FEA/WhitePaper_Co-rotational.pdf
43.
Tasora
,
A.
,
2017
, “
Time Integration in CHRONO::Engine
,” Project::Chrono Technical Documentation, Università di Parma, Parma, Italy, accessed Feb. 19, 2018, http://www.projectchrono.org/assets/white_papers/ChronoCore/integrator.pdf
44.
Vollan, A., and Komzsik, L., 2012,
Computational Techniques of Rotor Dynamics with the Finite Element Method
(Series of Computational Techniques of Engineering), 1st ed., CRC Press Taylor and Francis Group, Boca Raton, FL.
You do not currently have access to this content.