Advanced engine configuration studies have shown large advantages for an engine with counter-rotating spools with intershaft counter-rotating roller bearings. Mounted on two counter-rotating differential-speed hollow rotors, the bearing internal kinetic behavior, dynamic behavior, and then thermal behavior change greatly, causing a severe challenge to engine designers using traditional analysis methods. A special quasi-dynamic model for counter-rotating roller bearing is proposed, considering rings deformation and windage effects, to analyze the bearing mechanical and thermal behavior in different mounting configurations. Roller sliding and bearing heat generation are calculated and compared with experimental data to verify the model capabilities. It shows that the configuration that connects the inner ring to the high-speed rotor has life cycle advantage with more uniform load distribution, smaller roller/ring clearance, and lower cage speed. This leads to less drag loss due to the rotation of the rollers and cage assembly. The decrease of the total power loss is a key element to minimize the quantity of oil required to lubricate the roller bearing.

References

1.
Zhao
,
W.
,
Wu
,
B.
, and
Xu
,
J.
,
2015
, “
Aerodynamic Design and Analysis of a Multistage Vaneless Counter-Rotating Turbine
,”
ASME J. Turbomach.
,
137
(
6
), p.
061008
.
2.
Singh
,
A. P.
,
2008
, “
Intelligent Engine Systems: Bearing System
,” NASA Glenn Research Center, Cleveland, OH, Technical Report No.
NASA-CR-215239
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080025996.pdf
3.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P.
,
2014
, “
Effect of Varying the Number of Rollers on Dynamics of a Cylindrical Roller Bearing
,”
ASME
Paper No. DETC2014-34824.
4.
Defaye
,
C.
,
Nelias
,
D.
,
Leblanc
,
A.
, and
Bon
,
F.
,
2008
, “
Theoretical Analysis of High-Speed Cylindrical Roller Bearing With Flexible Rings Mounted in a Squeeze Film Damper
,”
Tribol. Trans.
,
51
(
6
), pp.
762
770
.
5.
Leblanc
,
A.
,
Nelias
,
D.
, and
Defaye
,
C.
,
2009
, “
Nonlinear Dynamic Analysis of Cylindrical Roller Bearing With Flexible Rings
,”
J. Sound Vib.
,
325
(
1–2
), pp.
145
160
.
6.
Gupta
,
P. K.
,
1984
,
Advanced Dynamics of Rolling Elements
, 1st ed.,
Springer Science & Business Media
,
New York
, p. 296.
7.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
8.
Parker
,
R. J.
,
1984
, “
Comparison of Predicted and Experimental Thermal Performance of Angular-Contact Ball Bearings
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TP-2275
.https://ntrs.nasa.gov/search.jsp?R=19840010586&hterms=Comparison+Predicted+Experimental+Thermal+Performance+Angular-Contact+Ball+Bearings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DComparison%2BPredicted%2BExperimental%2BThermal%2BPerformance%2BAngular-Contact%2BBall%2BBearings
9.
Pouly
,
F.
,
Changenet
,
C.
,
Ville
,
F.
,
Velex
,
P.
, and
Damiens
,
B.
,
2010
, “
Power Loss Predictions in High-Speed Rolling Element Bearings Using Thermal Networks
,”
Tribol. Trans.
,
53
(
6
), pp.
957
967
.
10.
Tu
,
M.
,
2016
, “
Validation and Modeling of Power Losses of NJ406 Cylindrical Roller Bearings
,” Master's thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
11.
Von Karman
,
T.
,
1946
, “
On Laminar and Turbulent Friction
,” NASA Lewis Research Center, Cleveland, OH, Technical, Report No. NACA-TM-1092.
12.
Lacroix
,
S.
,
Nelias
,
D.
, and
Leblanc
,
A.
,
2013
, “
Four-Point Contact Ball Bearing Model With Deformable Rings
,”
ASME J. Tribol.
,
135
(
3
), p.
031402
.
13.
Lacroix
,
S.
,
Nelias
,
D.
, and
Leblanc
,
A.
,
2015
, “
Experimental Study of Four-Point Contact Ball Bearing With Deformable Rings
,”
Tribol. Trans.
,
58
(
6
), pp.
963
970
.
14.
Nelias
,
D.
,
Seabra
,
J.
, and
Flamand
,
L.
,
1994
, “
Power Loss Prediction in High-Speed Roller Bearings
,”
Tribol. Ser.
,
27
, pp.
465
478
.
15.
Gupta
,
P. K.
,
2011
, “
Current Status of and Future Innovations in Rolling Bearing Modeling
,”
Tribol. Trans.
,
54
(
3
), pp.
394
403
.
16.
Cao
,
H.
,
Niu
,
L.
,
Xi
,
S.
, and
Chen
,
X.
,
2018
, “
Mechanical Model Development of Rolling Bearing-Rotor Systems: A Review
,”
Mech. Syst. Signal Process.
,
102
, pp.
37
58
.
17.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1977
,
Elasto-Hydrodynamic Lubrication: International Series on Materials Science and Technology
, Vol.
23
, Pergamon Press, Oxford, UK.
18.
Cavallaro
,
G.
,
Nelias
,
D.
, and
Bon
,
F.
,
2005
, “
Analysis of High-Speed Intershaft Cylindrical Roller Bearing With Flexible Rings
,”
Tribol. Trans.
,
48
(
2
), pp.
154
164
.
19.
Nelias
,
D.
,
1997
, “
Experimental and Theoretical Investigation on Temperature and Micro-Scuffing in EHL Contacts
,”
Rev. Gen. Therm.
,
36
(
1
), pp.
26
39
.
20.
Evans
,
R. D.
,
Barr
,
T. A.
,
Houpert
,
L.
, and
Boyd
,
S. V.
,
2013
, “
Prevention of Smearing Damage in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
56
(
5
), pp.
703
716
.
21.
Han
,
Q.
,
Li
,
X.
, and
Chu
,
F.
,
2018
, “
Skidding Behavior of Cylindrical Roller Bearings Under Time-Variable Load Conditions
,”
Int. J. Mech. Sci.
,
135
, pp.
203
214
.
22.
Flouros
,
M.
,
2005
, “
The Impact of Oil and Sealing Air Flow, Chamber Pressure, Rotor Speed, and Axial Load on the Power Consumption in an Aeroengine Bearing Chamber
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
182
186
.
23.
Flouros
,
M.
,
2006
, “
Correlations for Heat Generation and Outer Ring Temperature of High Speed and Highly Loaded Ball Bearings in an Aero-Engine
,”
Aerosp. Sci. Technol.
,
10
(
7
), pp.
611
617
.
24.
Flouros
,
M.
,
2006
, “
Reduction of Power Losses in Bearing Chambers Using Porous Screens Surrounding a Ball Bearing
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
178
182
.
25.
Gloeckner
,
P.
,
Dullenkopf
,
K.
, and
Flouros
,
M.
,
2011
, “
Direct Outer Ring Cooling of a High Speed Jet Engine Mainshaft Ball Bearing: Experimental Investigation Results
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
062503
.
26.
Flouros
,
M.
,
Hirschmann
,
M.
,
Cottier
,
F.
,
Gloeckner
,
P.
, and
Dullenkopf
,
K.
,
2013
, “
Active Outer Ring Cooling of High-Loaded and High-Speed Ball Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
8
), p.
081902
.
27.
Gloeckner
,
P.
,
Martin
,
M.
, and
Flouros
,
M.
,
2017
, “
Comparison of Power Losses and Temperatures Between an All-Steel and a Direct Outer Ring-Cooled, Hybrid 133-mm-Bore Ball Bearing at Very High Speeds
,”
Tribol. Trans.
,
60
(
6
), pp.
1148
1158
.
28.
Flouros
,
M.
,
Gloeckner
,
P.
,
Hirschmann
,
M.
,
Martin
,
M.
,
Cottier
,
F.
, and
Papailia
,
D.
,
2018
, “
Experimental and Numerical Investigation of the Outer Ring Cooling Concept in a Hybrid and in an All-Steel Ball Bearing Used in Aero-Engines by the Introduction of a Helical Duct
,”
Aerospace
,
5
(
1
), p.
23
.
29.
Nelias
,
D.
,
Sainsot
,
P.
, and
Flamand
,
L.
,
1994
, “
Power Loss of Gearbox Ball Bearing Under Axial and Radial LoadsⒸ
,”
Tribol. Trans.
,
37
(
1
), pp.
83
90
.
30.
Demidovich
,
V. M.
,
1978
, “
Issledovanie Teplovogo Rezhima Podshipnikov GTD (Analysis of the thermal condition of gas turbine engine bearings)
,” Moscow: Mashinostroenie Publ., p. 171 (in Russian).
31.
Zhu
,
P.
,
Liu
,
Z.
,
Gao
,
W.
,
Zhao
,
J.
, and
Lu
,
Y.
,
2015
, “
Calculation Study of Heat Generation in Counter-Rotating Cylindrical Roller Bearing
,”
Asia-Pacific International Symposium on Aerospace Technology
(
APISAT
2015),
Cairns, Australia
,
Nov. 25–27
, p.
91
.http://toc.proceedings.com/30588webtoc.pdf
You do not currently have access to this content.