Abstract

Recent research on turbomachinery design and analysis for supercritical carbon dioxide (sCO2) power cycles has relied on computational fluid dynamics. This has produced a large number of works whose approach is mostly case-specific, rather than of general application to sCO2 turbomachinery design. As opposed to such approach, this work explores the aerodynamic performance of compressor blade cascades operating on air and supercritical CO2 with the main objective to evaluate the usual aerodynamic parameters of the cascade for variable boundary conditions and geometries, enabling “full” or “partial” similarity. The results present both the global performance of the cascades and certain features of the local flow (trailing edge and wake). The discussion also highlights the mechanical limitations of the analysis (forces exerted on the blades), which is the main restriction for applying similarity laws to extrapolate the experience gained through decades of work on air turbomachinery to the new working fluid. This approach is a step toward the understanding and appropriate formulation of a multi-objective optimization problem for the design of such turbomachinery components where sCO2 is used as the operating fluid. With this objective, the paper aims to identify and analyze what would be expected if a common description of such computational design problems similar to those where air is the working fluid were used.

References

1.
Angelino
,
G.
,
1969
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.10.1115/1.3609190
2.
Angelino
,
G.
,
1969
, “
Real Gas Effects in Carbon Dioxide Cycles
,”
ASME Paper No. 69-GT-102.
10.1115/69-GT-102
3.
Dostal
,
V.
,
Driscoll
,
M.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
4.
Wright
,
S.
,
Radel
,
R.
,
Vernon
,
M.
,
Rochau
,
G.
, and
Pickard
,
P.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,”
Sandia National Lab
,
Albuquerque, NM
, Report No. SAND2010-0171.
5.
Utamura
,
M.
,
Hasuike
,
H.
,
Ogawa
,
K.
,
Yamamoto
,
T.
,
Fukushima
,
T.
,
Watanabe
,
T.
, and
Himeno
,
T.
,
2012
, “
Demonstration of Supercritical CO2 Closed Regenerative Brayton Cycle in a Bench Scale Experiment
,”
ASME Paper No. GT2012-68697
.10.1115/GT2012-68697
6.
Fuller
,
R.
,
2007
, “
Turbo-Machinery Considerations Using Super-Critical Carbon Dioxide Working Fluid for a Closed Brayton Cycle
,”
First International sCO2 Power Cycles Symposium
,
Cambridge, MA
, Mar. 6, Paper No.7.http://sco2symposium.com/papers2007/7-fuller.pdf
7.
Rinaldi
,
E.
,
Colonna
,
P.
, and
Pecnik
,
R.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME Paper No. GT2012-69640
. 10.1115/GT2012-69640
8.
Pecnik
,
R.
,
Colonna
,
P.
, and
Rinaldi
,
E.
,
2013
, “
Steadystate CFD Investigation of a Radial Compressor Operating With Supercritical CO2
,”
ASME Paper No. GT2013-94580
.10.1115/GT2013-94580
9.
Sienicki
,
J.
,
Moisseytsev
,
A.
,
Fuller
,
R.
,
Wright
,
S.
, and
Pickard
,
P.
,
2011
, “
Scale Dependencies of Supercritical Carbon Dioxide Brayton Cycle Technologies and the Optimal Size for a Next-Step Supercritical CO2 Cycle Demonstration
,”
Third International sCO2 Power Cycles Symposium
,
Boulder, CO
, May 24–25, pp.
1
5
. http://www.sco2powercyclesymposium.org/resource_center/development_priorities/scale-dependencies-of-supercritical-carbon-dioxide-brayton-cycle-technologies-and-the-optimal-size-for-a-next-step-supercritical-co2-cycle-demonstration
10.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME Paper No. GT2012-68735
. 10.1115/GT2012-68735
11.
Fleming
,
D.
,
Holschuh
,
T.
,
Conboy
,
T.
,
Pasch
,
J.
,
Wright
,
S.
, and
Rochau
,
G.
,
2012
, “
Scaling Considerations for a Multi-Megawatt Class Supercritical CO2 Brayton Cycle and Path Forward for Commercialization
,”
ASME Paper No. GT2012-68484
. 10.1115/GT2012-68484
12.
Wang
,
Y.
,
Guenette
,
G.
,
Hejzlar
,
P.
, and
Driscoll
,
M.
,
2004
, “
Compressor Design for the Supercritical CO2 Brayton Cycle
,”
AIAA Paper No. 2004-5722
. 10.2514/6.2004-5722
13.
Moisseytsev
,
A.
, and
Sienicki
,
J.
,
2006
, “
Development of a Plant Dynamics Computer Code for Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to a Natural Circulation Lead-Cooled Fast Reactor
,”
Argonne National Lab
,
Argonne, IL
, Report No. ANL-06/27.
14.
Takagi
,
K.
,
Muto
,
Y.
,
Ishizuka
,
T.
,
Kikura
,
H.
, and
Aritomi
,
M.
,
2010
, “
Research on Flow Charactreristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis
,”
J. Power Energy
,
4
, pp.
138
149
.
15.
Monje
,
B.
,
2013
, “
Design of Supercritical Carbon Dioxide Centrifugal Compressors
,”
Ph.D. thesis
,
School of Engineering, University of Seville
,
Seville, Spain
.
16.
Monje
,
B.
,
Sánchez
,
D.
,
Chacartegui
,
R.
,
Sánchez
,
T.
,
Savill
,
M.
, and
Pilidis
,
P.
,
2013
, “
Aerodynamic Analysis of Conical Diffusers Operating With Air and Supercritical Carbon Dioxide
,”
Int. J. Heat Fluid Flow
,
44
, pp.
542
553
.10.1016/j.ijheatfluidflow.2013.08.010
17.
Weiland
,
N.
, and
Thimsen
,
D.
,
2016
, “
A Practical Look at Assumptions and Constraints for Steady State Modeling of sCO2 Brayton Power Cycles
,”
Fifth International sCO2 Power Cycles Symposium
, San Antonio, TX, Mar. 29–31, Paper No. 102.
18.
Miller
,
J.
,
Buckmaster
,
D.
,
Hart
,
K.
,
Held
,
T.
,
Thimsen
,
D.
,
Maxson
,
A.
,
Phillips
,
J.
, and
Hume
,
S.
,
2017
, “
Comparison of Supercritical CO2 Power Cycles to Steam Rankine Cycles in Coal-Fired Applications
,”
ASME
Paper No. GT2017-64933. 10.1115/GT2017-64933
19.
Wisler
,
D.
,
1984
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME Paper No. 84-GT-184
. 10.1115/84-GT-184
20.
Zhu
,
N.
,
Xu
,
L.
, and
Chen
,
M.
,
1991
, “
Similarity Transformations for Compressor Blading
,”
ASME Paper No. 91-GT-123.
21.
Zou
,
Z.
, and
Ding
,
C.
,
2018
, “
A New Similarity Method for Turbomachinery With Different Working Media
,”
Appl. Therm. Eng.
,
133
, pp.
170
178
.10.1016/j.applthermaleng.2018.01.034
22.
Simoes
,
M. R.
,
Montojos
,
N. R.
, and
Moura
,
J. S.
,
2009
, “
Validation of Turbulence Models for Simulation of Axial Flow Compressors
,”
20th International Congress of Mechanical Engineering
,
Gramado, Brazil
, Nov. 15–20, Paper No. COB09-3328.http://www.fem.unicamp.br/~phoenics/EM974/PROJETOS/Temas%20Projetos/Axial%20Compressor/COB09-3328.pdf
23.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
24.
Scalabrin
,
G.
,
Marchi
,
P.
,
Finezzo
,
F.
, and
Span
,
R.
,
2006
, “
A Reference Multiparameter Thermal Conductivity Equation for Carbon Dioxide With an Optimized Functional Form
,”
J. Phys. Chem. Ref. Data
,
35
(
4
), pp.
1549
1575
.10.1063/1.2213631
25.
Fenghour
,
A.
,
Wakeham
,
W.
, and
Vesovic
,
V.
,
1998
, “
The Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
27
(
1
), pp.
31
44
.10.1063/1.556013
26.
Hofer
,
D.
, and
Moisseytsev
,
A.
,
2018
, “
Supercritical CO2 Power Cycle Modeling and Fluid Properties Tutorial
,”
ASME Paper No. GT2018-77461
. 10.1115/GT2018-77461
27.
Sánchez
,
D.
,
Monje
,
B.
,
Chacartegui
,
R.
,
Barragán
,
J. M.
,
Pajuelo
,
E.
,
Gómez
,
J. R.
, and
Sánchez
,
T.
,
2013
, “
Engineering a Pressurised Wind Tunnel Aimed at Developing CO2 Turbomachinery
,”
ASME Paper No. GT2013-94007
. 10.1115/GT2013-94007
28.
Dolan
,
F.
, and
Runstadler
,
P.
,
1973
, “
Pressure Recovery Performance of Conical Diffusers at High Subsonic Mach Numbers
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No. NASA-CR-2299.
29.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P.
, and
Freitas
,
C.
,
2008
, “
Procedure for Estimation and Reporting of Discretization Error in CFD Applications
,”
ASME J. Fluids Eng.
,
130
, pp.
1
4
.
30.
Lieblein
,
S.
,
1965
, “
Experimental Flow in Two-Dimensional Cascades
,”
Aerodynamic Design of Axial-Flow Compressors
,
A.
Johnsen
, and
R.
Bullock
, eds.,
National Aeronautics and Space Administration
,
Washington, DC
, pp.
183
226
.
31.
Monje
,
B.
,
Sánchez
,
D.
,
Chacartegui
,
R.
,
Sánchez
,
T.
,
Savill
,
M.
, and
Pilidis
,
P.
,
2012
, “
Comparing the Pressure Rise of Air and Supercritical Carbon Dioxide in Conical Diffusers
,”
ASME Paper No. GT2012-69835
. 10.1115/GT2012-69835
32.
Dixon
,
S.
,
1998
,
Fluid Mechanics, Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
33.
Kipouros
,
T.
,
Jaeggi
,
D. M.
,
Dawes
,
W. N.
,
Parks
,
G. T.
,
Savill
,
A. M.
, and
Clarkson
,
P. J.
,
2008
, “
Biobjective Design Optimization for Axial Compressors Using Tabu Search
,”
AIAA J.
,
46
(
3
), pp.
701
711
.10.2514/1.32794
34.
Kipouros
,
T.
,
Jaeggi
,
D. M.
,
Dawes
,
W. N.
,
Parks
,
G. T.
,
Savill
,
A. M.
, and
Clarkson
,
P. J.
,
2008
, “
Insight Into Highquality Aerodynamic Design Spaces Through Multi-Objective Optimization
,”
CMES: Comput. Model. Eng. Sci.
,
37
(
1
), pp.
1
23
..https://core.ac.uk/download/pdf/139505.pdf
You do not currently have access to this content.