Abstract

Shape optimization with respect to the suppression or enhancement of dynamical flow structures is an important topic in combustion research and beyond. In this paper, we investigate the flow in an industrial fuel injection system by experimental means, as well as large eddy simulation (LES) and linear stability analysis (LSA) for two configurations of the swirler. In the first configuration, the reference geometry, a precessing vortex core (PVC) occurs. In the second configuration, a center body is mounted in the interior of the injector. It is shown by both experiments and LES that the PVC is suppressed by the presence of the center body, while the mean flow remains nearly unaffected. The method of LSA is applied in order to explain the effect of the geometry change. The work shows that LSA is capable of explaining the occurrence or disappearance of coherent structures evolving on the turbulent flows if the geometry is changed. This is an important step in using LSA in the context of shape optimization of industrial fuel injectors.

References

1.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.10.1016/j.combustflame.2012.03.020
2.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
,
1987
, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
, pp.
265
292
.10.1017/S0022112087000958
3.
Candel
,
S. M.
,
1992
, “
Combustion Instabilities Coupled by Pressure Waves and Their Active Control
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
1277
1296
.10.1016/S0082-0784(06)80150-5
4.
Qadri
,
U.
,
Mistry
,
D.
, and
Juniper
,
M.
,
2011
, “
Sensitivity Analysis of Spiral Vortex Breakdown
,” EUROMECH Colloquium 525.
5.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.10.1017/S0022112007005654
6.
Kuhn
,
P.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Control of the Precessing Vortex Core by Open and Closed-Loop Forcing in the Jet Core
,”
ASME Paper No. GT2016-57686
.10.1115/GT2016-57686
7.
Lückoff
,
F.
,
Sieber
,
M.
, and
Oberleithner
,
K.
,
2018
, “
Open-Loop Control of the Precessing Vortex Core in a Swirl-Stabilized Combustor: Impact on Flame Shape and Flame Stability
,”
ASME Paper No. GT2018-75472
.10.1115/GT2018-75472
8.
Chomaz
,
J.-M.
,
2005
, “
Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
357
392
.10.1146/annurev.fluid.37.061903.175810
9.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
,
1990
, “
On the Formation and Suppression of Vortex 'Shedding ' at Low Reynolds Numbers
,”
J. Fluid Mech.
,
218
(
1
), pp.
71
107
.10.1017/S0022112090000933
10.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2015
, “
Adjoint Sensitivity Analysis of Hydrodynamic Stability in a Gas Turbine Fuel Injector
,”
ASME Paper No. GT2015-42736
.10.1115/GT2015-42736
11.
Paschereit
,
C. O.
,
Flohr
,
P.
,
Knpfel
,
H.
,
Geng
,
W.
,
Steinbach
,
C.
,
Stuber
,
P.
,
Bengtsson
,
K.
, and
Gutmark
,
E.
,
2002
, “
Combustion Control by Extended EV Burner Fuel Lance
,”
ASME Paper No. GT2002-30462
.10.1115/GT2002-30462
12.
Poinsot
,
T.
,
2005
,
The AVBP Handbook
,
Cerfacs
,
Toulouse, France
.
13.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
14.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
15.
Daviller
,
G.
,
Brebion
,
M.
,
Xavier
,
P.
,
Staffelbach
,
G.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2017
, “
A Mesh Adaptation Strategy to Predict Pressure Losses in Les of Swirled Flows
,”
Flow, Turbul. Combust.
,
99
(
1
), pp.
93
118
.10.1007/s10494-017-9808-z
16.
Kaiser
,
T. L.
,
Poinsot
,
T.
, and
Oberleithner
,
K.
,
2018
, “
Stability and Sensitivity Analysis of Hydrodynamic Instabilities in Industrial Swirled Injection Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
51506
.10.1115/1.4038283
17.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
18.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.10.1017/S0022112070000605
19.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
20.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech., B
,
59
, pp.
205
218
.10.1016/j.euromechflu.2016.05.004
21.
Ivanova
,
E. M.
,
Noll
,
B. E.
, and
Aigner
,
M.
,
2013
, “
A Numerical Study on the Turbulent Schmidt Numbers in a Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011505
.10.1115/1.4007374
22.
Hecht
,
F.
,
2012
, “
New Development in FreeFem++
,”
J. Numer. Math.
,
20
(
3–4
), pp.
251
265
.10.1515/jnum-2012-0013
23.
Lehoucq
,
R.
,
Sorensen
,
D.
, and
Yang
,
C.
,
1998
, “
Arpack Users' Guide: Solution of Large Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
,” Vol. 6, Society for Industrial and Applied Mathematics, Philadelphia, PA.
24.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(2), pp.
391
421
.10.3934/jcd.2014.1.391
25.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors
,”
Int. J. Non-Linear Mech.
,
50
, pp.
152
163
.10.1016/j.ijnonlinmec.2012.11.008
You do not currently have access to this content.