Abstract

A numerical investigation is conducted to shed light on the reasons leading to different flame configurations in gas turbine (GT) combustion chambers of aeronautical interest. Large eddy simulations (LES) with a flamelet-based combustion closure are employed for this purpose to simulate the DLR-AT big optical single sector (BOSS) rig fitted with a Rolls-Royce developmental lean burn injector. The reacting flow field downstream this injector is sensitive to the intricate turbulent–combustion interaction and exhibits two different configurations: (i) a penetrating central jet leading to an M-shape lifted flame; or (ii) a diverging jet leading to a V-shaped flame. The LES results are validated using available BOSS rig measurements, and comparisons show the numerical approach used is consistent and works well. The turbulent–combustion interaction model terms and parameters are then varied systematically to assess the flame behavior. The influences observed are discussed from physical and modeling perspectives to develop physical understanding on the flame behavior in practical combustors for both scientific and design purposes.

References

1.
Gicquel
,
L. Y. M.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.10.1016/j.pecs.2012.04.004
2.
Syred
,
N.
, and
Beér
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
3.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energ. Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
4.
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion
,”
Proc. Combust. Int.
,
34
(
2
), pp.
3117
3125
.10.1016/j.proci.2012.05.015
5.
Kraus
,
C.
,
Harth
,
S.
, and
Bockhorn
,
H.
,
2016
, “
Experimental Investigation of Combustion Instabilities in Lean Swirl-Stabilized Partially-Premixed Flames in Single- and Multiple-Burner Setup
,”
Spray Combust. Dyn.
,
8
(
1
), pp.
4
26
.10.1177/1756827715627064
6.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustic Phenomena
,”
Nature
,
18
, pp.
319
321
.10.1038/018319a0
7.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes
,”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.10.1016/j.combustflame.2005.02.013
8.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities: Basic Concepts
,” Combustion Instabilities in gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling (Progress in Astronautics and Aeronautics, Vol. 210), American Institute of Aeronautics and Astronautics, Reston, VA.
9.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Prop. Power
,
19
(
5
), pp.
722
734
.10.2514/2.6182
10.
Driscoll
,
J. F.
, and
Temme
,
J.
,
2011
, “
Role of Swirl in Flame Stabilization
,”
AIAA
Paper No.
2011
108
.10.2514/6.2011-108
11.
O'Connor
,
T.
, and
Lieuwen
,
T.
,
2011
, “
Disturbance Field Characteristics of a Transversely Excited Burner
,”
Combust. Sci. Technol.
,
183
, pp.
427
443
.10.1080/00102202.2010.529478
12.
Duwig
,
C.
, and
Fuchs
,
L.
,
2005
, “
Study of Flame Stabilization in a Swirling Combustor Using a New Flamelet Formulation
,”
Combust. Sci. Technol.
,
177
(
8
), pp.
1485
1510
.10.1080/00102200590956669
13.
Cheneau
,
B.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2019
, “
Numerical Study of Flame Shapes and Structures in a Two-Stage Two-Injection Aeronautical Burner With Variable Fuel Staging Using Eulerian Large Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071014
.10.1115/1.4042205
14.
Sommerer
,
Y.
,
Galley
,
D.
,
Poinsot
,
T.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2004
, “
Large Eddy Simulation and Experimental Study of Flashback and Blow-Off in a Lean Partially Premixed Swirled Burner
,”
J. Turbul.
,
5
, pp.
1
21
.10.1088/1468-5248/5/1/037
15.
Kohse-Höinghaus
,
K.
,
Barlow
,
R. S.
,
Aldén
,
M.
, and
Wolfrum
,
J.
,
2005
, “
Combustion at the Focus: Laser Diagnostics and Control
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
89
123
.10.1016/j.proci.2004.08.274
16.
Schneider
,
D.
,
Meier
,
U.
,
Quade
,
W.
,
Koopman
,
J.
,
Aumeier
,
T.
,
Langfeld
,
A.
,
Behrendt
,
T.
,
Hassa
,
C.
, and
Rackwitz
,
L.
,
2010
, “
A New Test Rig for Laser Optical Investigations of Lean Jet Burners
,”
27th International Congress of the Aeronautical Sciences
, Nice, France, Sept. 19–24, Paper No.
2010-4.3.3
.http://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/409.PDF
17.
Freitag
,
S.
,
Behrendt
,
T.
,
Heinze
,
J.
,
Lange
,
L.
,
Meier
,
U.
,
Rackwitz
,
L.
, and
Hassa
,
C.
,
2011
, “
Study of an Airblast Atomizer Spray in a Lean Burn Aero-Engine Model Combustor at Engine Conditions
,”
Proc. ILASSEurope
, Estoril, Portugal, Sept. 5–7, Paper No.
71319
.https://www.researchgate.net/publication/225022153_Study_of_an_Airblast_Atomizer_Spray_in_a_Lean_Burn_Aero-Engine_Model_Combustor_at_Engine_Conditions
18.
Meier
,
U.
,
Lange
,
L.
,
Heinze
,
J.
,
Hassa
,
C.
,
Sadig
,
S.
, and
Luff
,
D.
,
2014
, “
Optical Methods for Studies of Self-Excited Oscillations and the Effect of Dampers in a High Pressure Single Sector Combustor
,”
ASME
Paper No. GT2014-25873. 10.1115/GT2014-25873
19.
Pope
,
S. B.
,
2000
, “
Large-Eddy Simulation
,”
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
20.
Poinsot
,
T. J.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
Edwards
, Philadelphia, PA.
21.
Langella
,
I.
, and
Swaminathan
,
N.
,
2016
, “
Unstrained and Strained Flamelets for LES of Premixed Combustion
,”
Combust. Theory Modell.
,
20
(
3
), pp.
410
440
.10.1080/13647830.2016.1140230
22.
Langella
,
I.
,
Swaminathan
,
N.
, and
Pitz
,
R. W.
,
2016
, “
Application of Unstrained Flamelet SGS Closure for Multi-Regime Premixed Combustion
,”
Combust. Flame
,
173
, pp.
161
178
.10.1016/j.combustflame.2016.08.025
23.
Langella
,
I.
,
Swaminathan
,
N.
,
Williams
,
F. A.
, and
Furukawa
,
J.
,
2016
, “
Large-Eddy Simulation of Premixed Combustion in the Corrugated-Flamelet Regime
,”
Combust. Sci. Technol.
,
188
(
9
), pp.
1565
1591
.10.1080/00102202.2016.1195824
24.
Chen
,
Z.
,
Ruan
,
S.
, and
Swaminathan
,
N.
,
2017
, “
Large Eddy Simulation of Flame Edge Evolution in a Spark-Ignited Methane–Air Jet
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1645
1652
.10.1016/j.proci.2016.06.023
25.
Langella
,
I.
,
Chen
,
Z. X.
,
Swaminathan
,
N.
, and
Sadasivuni
,
S. K.
,
2018
, “
Large-Eddy Simulation of Reacting Flows in Industrial Gas Turbine Combustor
,”
J. Propul. Power
,
34
(
5
), pp.
1269
1284
.10.2514/1.B36842
26.
Dunn
,
M. J.
,
Masri
,
A. R.
,
Bilger
,
R. W.
,
Barlow
,
R. S.
, and
Wang
,
G. H.
,
2009
, “
The Compositional Structure of Highly Turbulent Piloted Premixed Flames Issuing Into a Hot Coflow
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1779
1786
.10.1016/j.proci.2008.08.007
27.
Dunn
,
M. J.
,
Masri
,
A. R.
,
Bilger
,
R. W.
, and
Barlow
,
R. S.
,
2010
, “
Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames
,”
Flow Turbul. Combust.
,
85
(
3–4
), pp.
621
648
.10.1007/s10494-010-9280-5
28.
Poludnenko
,
A. Y.
, and
Oran
,
E. S.
,
2010
, “
The Interaction of High-Speed Turbulence With Flames: Global Properties and Internal Flame Structure
,”
Combust. Flame
,
157
(
5
), pp.
995
1011
.10.1016/j.combustflame.2009.11.018
29.
Temme
,
J.
,
Wabel
,
T. M.
,
Skiba
,
A. W.
, and
Driscoll
,
J. F.
,
2015
, “
Measurements of Premixed Turbulent Combustion Regimes of High Reynolds Number Flames
,”
AIAA
Paper No. 2015-0168. 10.2514/6.2015-0168
30.
Poinsot
,
T.
,
Veynante
,
D.
, and
Candel
,
S.
,
1991
, “
Quenching Processes and Premixed Turbulent Combustion Diagrams
,”
J. Fluid Mech.
,
228
, pp.
561
606
.10.1017/S0022112091002823
31.
Roberts
,
W. L.
,
Driscoll
,
J. F.
,
Drake
,
M. C.
, and
Goss
,
L. P.
,
1993
, “
Images of the Quenching of a Flame by a Vortex—to Quantify Regimes of Turbulent Combustion
,”
Combust. Flame
,
94
(
1–2
), pp.
58
69
.10.1016/0010-2180(93)90019-Y
32.
Duwig
,
C.
,
2007
, “
Study of a Filtered Flame Formulation for Large Eddy Simulation of Premixed Turbulent Flames
,”
Flow Turbul. Combust.
,
79
(
4
), pp.
433
454
.10.1007/s10494-007-9107-1
33.
Giusti
,
A.
,
Mastorakos
,
E.
,
Hassa
,
C.
,
Heinze
,
J.
,
Magens
,
E.
, and
Zedda
,
M.
,
2018
, “
Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061506
.10.1115/1.4038025
34.
Heinze
,
J.
,
Meier
,
U.
,
Behrendt
,
T.
,
Willert
,
C.
,
Geigle
,
K.-P.
,
Lammel
,
O.
, and
Lückerath
,
R.
,
2011
, “
PLIF Thermometry Based on Measurements of Absolute Concentrations of the OH Radical
,”
Z. Chem. Phys.
,
225
(
11–12
), pp.
1315
1341
.10.1524/zpch.2011.0168
35.
Lange
,
L.
,
Heinze
,
J.
,
Scholl
,
M.
,
Willert
,
C.
, and
Behrendt
,
T.
,
2012
, “
Combination of Planar Laser Optical Measurement Techniques for the Investigation of Pre-Mixed Lean Combustion
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 9–12, Paper No.
3.11.4
. https://www.researchgate.net/publication/259896019_Combination_of_planar_laser_optical_measurement_techniques_for_the_investigation_of_pre-mixed_lean_combustion
36.
Swaminathan
,
N.
, and
Bray
,
K. N. C.
,
2011
, “
Fundamentals and Challenges
,”
Turbulent Premixed Flames
,
N.
Swaminathan
, and
K. N. C.
Bray
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
1
40
.
37.
Knudsen
,
E.
, and
Pitsch
,
H.
,
2012
, “
Capabilities and Limitations of Multi-Regime Flamelet Combustion Models
,”
Combust. Flame
,
159
(
1
), pp.
242
264
.10.1016/j.combustflame.2011.05.025
38.
Srinivasan
,
S.
, and
Menon
,
S.
,
2014
, “
Linear Eddy Mixing Model Studies of High Karlovitz Number Turbulent Premixed Flames
,”
Flow Turbul. Combust.
,
93
(
2
), pp.
189
219
.10.1007/s10494-014-9542-8
39.
Bilger
,
R. W.
,
Stårner
,
S. H.
, and
Kee
,
R. J.
,
1990
, “
On Reduced Mechanism for Methane-Air Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
.10.1016/0010-2180(90)90122-8
40.
Demoulin
,
F. X.
, and
Borghi
,
R.
,
2002
, “
Modeling of Turbulent Spray Combustion With Application to Diesel Like Experiment
,”
Combust. Flame
,
129
(
3
), pp.
281
293
.10.1016/S0010-2180(02)00340-1
41.
Fiorina
,
B.
,
Baron
,
R.
,
Gicquel
,
O.
,
Thevenin
,
D.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2003
, “
Modelling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM
,”
Combust. Theory Modell.
,
7
(
3
), pp.
449
470
.10.1088/1364-7830/7/3/301
42.
Davis
,
P. J.
,
1970
, “
Gamma Functions and Related Functions
,”
Handbook of Mathematical Functions
,
M.
Abramowitz
, and
I. A.
Stegun
, eds.,
Dover Publications
,
New York
.
43.
Pera
,
C.
,
Réveillon
,
J.
,
Vervisch
,
L.
, and
Domingo
,
P.
,
2006
, “
Modeling Subgrid Scale Mixture Fraction Variance in Les of Evaporating Spray
,”
Combust. Flame
,
146
(
4
), pp.
635
648
.10.1016/j.combustflame.2006.07.003
44.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
453
482
.10.1146/annurev.fluid.38.050304.092133
45.
Giusti
,
A.
,
Kotzagianni
,
M.
, and
Mastorakos
,
E.
,
2016
, “
LES/CMC Simulations of Swirl-Stabilised Ethanol Spray Flames Approaching Blow-Off
,”
Flow Turbul. Combust.
,
97
(
4
), pp.
1165
1184
.10.1007/s10494-016-9762-1
46.
Chrigui
,
M.
,
Gounder
,
J.
,
Sadiki
,
A.
,
Masri
,
A. R.
, and
Janicka
,
J.
,
2012
, “
Partially Premixed Reacting Acetone Spray Using Les and Fgm Tabulated Chemistry
,”
Combust. Flame
,
159
(
8
), pp.
2718
2741
.10.1016/j.combustflame.2012.03.009
47.
Dunstan
,
T. D.
,
Minamoto
,
Y.
,
Chakraborty
,
N.
, and
Swaminathan
,
N.
,
2013
, “
Scalar Dissipation Rate Modelling for Large Eddy Simulation of Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1193
1201
.10.1016/j.proci.2012.06.143
48.
Langella
,
I.
,
Swaminathan
,
N.
,
Gao
,
Y.
, and
Chakraborty
,
N.
,
2016
, “
Large Eddy Simulation of Premixed Combustion: Sensitivity to Subgrid Scale Velocity Modelling
,”
Combust. Sci. Technol.
189(1), pp.
43
78
.10.1080/00102202.2016.1193496
49.
Langella
,
I.
,
Doan
,
N. A. K.
,
Swaminathan
,
N.
, and
Pope
,
S. B.
,
2018
, “
Study of Subgrid-Scale Velocity Models for Reacting and Nonreacting Flows
,”
Phys. Rev. Fluids
,
3
(
5
), p.
054602
.10.1103/PhysRevFluids.3.054602
50.
Langella
,
I.
,
Swaminathan
,
N.
,
Gao
,
Y.
, and
Chakraborty
,
N.
,
2015
, “
Assessment of Dynamic Closure for Premixed Combustion LES
,”
Combust. Theory Modell.
,
19
(
5
), pp.
628
656
.10.1080/13647830.2015.1080387
51.
Anand
,
M. S.
,
Eggels
,
R.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2013
, “
An Advanced Unstructured-Grid Finite volume Design System for Gas Turbine Combustion Analysis
,”
ASME
Paper No. GTINDIA2013-3537. 10.1115/GTINDIA2013-3537
52.
Doormaal
,
J. P. V.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
53.
Dagaut
,
P.
, and
Cathonnet
,
M.
,
2006
, “
The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
48
92
.10.1016/j.pecs.2005.10.003
54.
Lilly
,
D. K.
,
1967
, “
The Representation of Small-Scale Turbulence in Numerical Simulation Experiments
,”
IBM Scientific Computing Symposium on Environmental Sciences
, Yorktown Heights, NY, Nov. 14–16, pp.
195
210
.
55.
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2013
, “
Analysis and Comparison of Primary Droplet Characteristics in the Near Field of a Prefilming Airblast Atomizer
,”
ASME
Paper No. GT2013-94033. 10.1115/GT2013-94033
56.
Schmehl
,
R.
,
Maier
,
G.
, and
Wittig
,
S.
,
2000
, “
CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor
,”
International Conference on Liquid Atomization and Spray Systems (ICLASS)
, Pasadena, CA, July 16–20, pp.
918
925
.
57.
Miller
,
R. S.
,
Harstad
,
K.
, and
Bellan
,
J.
,
1998
, “
Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Droplet Gas-Liquid Flow Simulations
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
1025
1055
.10.1016/S0301-9322(98)00028-7
58.
Batchelor
,
G. K.
,
1967
,
Introduction to Fluid Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
59.
Schildmacher
,
K.-U.
,
Koch
, Wittig, S.,
R.
,
Krebs
,
W.
, and
Hoffmann
,
S.
,
2000
, “
Experimental Investigations of the Temporal Air-Fuel Mixing Fluctuations and Cold Flow Instabilities of a Premixing Gas Turbine Burner
,”
ASME
Paper No. 200-GT-0084.10.1115/2000-GT-0084
60.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
, 126(2), pp.
276
283
.10.1115/1.1473155
61.
Vreman
,
A. W.
,
2004
, “
An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications
,”
Phys. Fluids
,
16
(
10
), pp.
3670
3681
.10.1063/1.1785131
You do not currently have access to this content.