Abstract

Fair comparison of future aircraft engine concepts requires the assumption of similar technological risk and a transparent book keeping of losses. A 1000 km and a 7000 km flight mission of a single-aisle airplane similar to the Aribus A321neo LR have been used to compare composite cycle engines, turbocompound engines and advanced gas turbines as potential options for an entry-into-service time frame of 2050+. A 2035 technology gas turbine serves as reference. The cycle optimization has been carried out with a peak pressure ratio of 250 and a maximum cycle temperature of 2200 K at cruise as boundary conditions. With the associated heat loss and the low efficiency of the gas exchange process limiting piston component efficiency, the cycle optimization filtered out composite cycle concepts. Taking mission fuel burn (MFB) as the most relevant criterion, the highest MFB reduction of 13.7% compared to the 2035 reference gas turbine is demonstrated for an air-cooled turbocompound concept with additional combustion chamber. An intercooled, hectopressure gas turbine with pressure gain combustion achieves 20.6% reduction in MFB relative to the 2035 reference gas turbine.

References

1.
Masson-Delmotte
,
V.
,
Zhai
,
P.
,
Pörtner
,
H.-O.
,
Roberts
,
D.
,
Skea
,
J.
,
Shukla
,
P. R.
,
Pirani
,
A.
,
Moufouma-Okia
,
W.
,
Péan
,
C.
,
Pidcock
,
R.
,
Connors
,
S.
,
Matthews
,
R. J.
,
Chen
,
Y.
,
Thou
,
X.
,
Gomis
,
M. I.
,
Lonnoy
,
E.
,
Maycock
,
T.
,
Tignor
,
M.
, and
Waterfield
,
T.
,
2018
, “
Global Warming of 1.5 Degree Celsius: IPCC Special Report on the Impacts of Global Warming of 1.5 Degree Celsius
,” Intergovernmental Panel on Climate Change, Geneva, Switzerland,
Report
.https://www.ipcc.ch/sr15/
2.
Whurr
,
J.
,
1995
, “
Aircraft Compound Cycle Propulsion Engine
,” U.S. Patent No.
US005692372A
.https://patents.google.com/patent/US5692372A/en
3.
Robinson
,
J.
,
2006
, “
Gasturbinentriebwerk
,” Patent No. DE 10 2006 015 928 A1.
4.
Klingels
,
H.
,
2013
, “
Wärmekraftmaschine Mit Freikolbenverdichter
,” Patent No.
DE 10 2012 206 123 A1
.https://patents.google.com/patent/DE102012206123A1/fr
5.
Gauvreau
,
J.-G.
, and
Gagnon-Martin
,
D.
,
2013
, “
Wankel Engine Rotor
,” Patent No.
EP 2735701A1
.https://patents.google.com/patent/EP2735701A1/fi
6.
Panting
,
J. R.
, and
Pullen
,
K. R.
,
2000
, “
Thermodynamic Studies of a Novel Aeroengine Concept
,”
Proc. Inst. Mech. Eng., Part G
,
214
(
2
), pp.
71
83
.10.1243/0954410001531827
7.
Kaiser
,
S.
,
Seitz
,
A.
,
Donnerhack
,
S.
, and
Lundbladh
,
A.
,
2015
, “
A Composite Cycle Engine Concept With Hecto-Pressure Ratio
,”
AIAA
Paper No. 2015-4028.10.2514/6.2015-4028
8.
Nickl
,
M.
,
Kaiser
,
S.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2016
, “
Performance Modeling of a Composite Cycle Engine With Rotary Engine
,”
DLRK Conference, DLRK
, Braunschweig, Germany, Paper No.
DLRK2016-420144
.https://www.researchgate.net/publication/319709794_Performance_Modeling_of_a_Composite_Cycle_Engine_with_Rotary_Engine
9.
Berg
,
H. P.
,
Malenky
,
U.
,
Himmelberg
,
A.
, and
Mykhalyuk
,
M.
,
2015
, “
Turbowankel-Triebwerks-Familien: Neuartige Antriebskonnzepte Fër Die Allgemeine Luftfahrt Der Zukunft
,”
DLRK Conference
, Rostock, Germany, Paper No.
DLRK2015-370071
.https://www.researchgate.net/publication/282332453_TURBOWANKEL-TRIEBWERKS-FAMILIEN_NEUARTIGE_ANTRIEBSKONZEPTE_FUR_DIE_ALLGEMEINE_LUFTFAHRT_DER_ZUKUNFT
10.
Berg
,
H. P.
,
Himmelberg
,
A.
,
Malenky
,
U.
,
Meincke
,
M.
, and
Soontornpasatch
,
T.
,
2016
, “
Hybrides Turbo Compound Fan Triebwerk: Ein Ökoeffizientes Antriebskonzept Für Die Luftfahrt
,”
DLRK Conference
, Braunschweig, Germany, Paper No.
DLRK2016-420246
.https://www.dglr.de/publikationen/2016/420246.pdf
11.
Eilts
,
P.
, and
Friedrichs
,
J.
,
2017
, “
Investigation of a Diesel Engine for Aircraft Application
,”
AIAA
Paper No. 2017-4792.10.2514/6.2017-4792
12.
Kaiser
,
S.
,
Kellermann
,
H.
,
Nickl
,
M.
, and
Seitz
,
A.
,
2018
, “
A Composite Cycle Engine Concept for Year 2050
,”
31st Congress of the International Council of the Aeronautical Sciences
, Belo Horizonte, Brazil, Sept. 9–14.https://www.researchgate.net/publication/327601208_A_Composite_Cycle_Engine_Concept_for_Year_2050
13.
Chatzianagnostou
,
D.
, and
Staudacher
,
S.
,
2018
, “
Comparison of Piston Concept Design Solutions for Composite Cycle Engines—Part I: Similarity Considerations
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091702
.10.1115/1.4039704
14.
Klein
,
F.
, and
Staudacher
,
S.
,
2018
, “
Plausibility Study of Hecto Pressure Ratio Concepts in Large Civil Aero-Engines
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051201
.10.1115/1.4038124
15.
Kaiser
,
S.
,
Nickl
,
M.
,
Salpingidou
,
C.
,
Vlahostergios
,
Z.
,
Donnerhack
,
S.
, and
Klingels
,
H.
,
2018
, “
Investigations of the Synergy of Composite Cycle and Intercooled Recuperation
,”
Aeronaut. J.
,
122
(
1252
), pp.
869
888
.10.1017/aer.2018.46
16.
Nickl
,
M.
, and
Kaiser
,
S.
,
2019
, “
Evaluation of Piston Engine Modes and Configurations in Composite Cycle Engine Architectures
,”
CEAS Aeronaut. J.
https://doi.org/10.1007/s13272-019-00399-w
17.
Norris, G.
,
2014
, “
Rolls-Royce Reveals Next-Gen Engine Plan
,” Aviation Week Network, Washington, DC, accessed Oct. 9, 2019, https://aviationweek.com/air-transport/rolls-royce-reveals-next-gen-engine-plan
18.
Staudacher
,
S.
,
Weigand
,
B.
,
Chatzianagnostou
,
D.
,
Kerber
,
E.
, and
Klein
,
F.
,
2019
, “
Technologien Für Revolutionäre Arbeitsprozesse-TREVAP
,” Stuttgart, Germany, Report No. LUFOV2-790-106/FKZ: 20E1505A.
19.
Felder
,
J. L.
,
Kim
,
H. D.
, and
Brown
,
G. V.
,
2009
, “
Torboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft
,”
AIAA
Paper No. 2009-1132.10.2514/6.2009-1132
20.
Steiner
,
H.-J.
,
Seitz
,
A.
,
Wieczorek
,
K.
,
Plötner
,
K.
,
Isikveren
,
A.
, and
Hornung
,
M.
,
2012
, “
Multi-Disciplinary Design and Feasibility Study of Distributed Propulsion Systems
,”
28th International Congress of the Aeronautical Sciences
, ICAS, Brisbane, Australia, Sept. 28.https://www.researchgate.net/publication/274705623_Multi-disciplinary_Design_and_Feasibility_Study_of_Distributed_Propulsion_Systems
21.
Armstrong
,
M.
,
2015
, “
Hybrid/Distributed Electric Propulsion Systems
,” SAE Paper.
22.
Laskaridis
,
P.
,
Valencia
,
E.
,
Kirner
,
R.
, and
Wei
,
T. J.
,
2015
, “
Assessment of Distributed Propulsion Systems Used With Different Aircraft Configuration
s,”
AIAA
Paper No. 2015-4029.10.2514/6.2015-4029
23.
Wick
,
A. T.
,
Hooker
,
J. R.
, and
Hardin
,
C. J.
,
2015
, “
Integrated Aerodynamic Benefits of Distributed Propulsion
,”
AIAA
Paper No. 2015-1500.10.2514/6.2015-1500
24.
Chengyuan
,
L.
,
Doulgeris
,
G.
,
Laskaridis
,
P.
, and
Singh
,
R.
,
2012
, “
Turboelectric Distributed Propulsion System Modelling for Hybrid-Wing-Body Aircraft
,”
AIAA
Paper No. 2012-3700.10.2514/6.2012-3700
25.
Stoll
,
A. M.
,
Bevirt
,
J.
,
Moore
,
M. D.
,
Fredericks
,
W. J.
, and
Borer
,
N. K.
,
2014
, “
Drag Reduction Through Distributed Electric Propulsion
,”
AIAA
Paper No. 2014-2851.10.2514/6.2014-2851
26.
Goldberg
,
C.
,
Nalianda
,
D.
,
Laskaridis
,
P.
, and
Pilidis
,
P.
,
2018
, “
Installed Performance Assessment of an Array of Distributed Propulsors Ingesting Boundary Layer Flow
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071203
.10.1115/1.4038837
27.
Felder
,
J. L.
,
Brown
,
G. V.
,
Kim
,
H. D.
, and
Chu
,
J.
,
2011
, “
Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft
,”
20th ISABE Conference
, Gothenburg, Sweden, Sept. 12–16, Paper No.
ISABE-2011-1340
.https://ntrs.nasa.gov/search.jsp?R=20120000856
28.
Kappler
,
G. R.
,
2013
, “
An Integrated Economic Evaluation of Preliminary Aero-Engine Design Concepts
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
29.
Cumpsty
,
N. A.
,
2010
, “
Preparing for the Future: Reducing Gas Turbine Environmental Impact—IGTI Scholar Lecture
,”
ASME J. Turbomach.
,
132
(
4
), p.
041017
.10.1115/1.4001221
30.
Kirner
,
R.
,
Raffaelli
,
L.
,
Rolt
,
A.
,
Laskaridis
,
P.
,
Doulgeris
,
G.
, and
Singh
,
R.
,
2015
, “
An Assessment of Distributed Propulsion: Advanced Propulsion System Architectures for Conventional Aircraft Configurations
,”
Aerosp. Sci. Technol.
,
46
, pp.
42
50
.10.1016/j.ast.2015.06.022
31.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.10.1115/1.1373398
32.
Staudacher
,
S.
,
1995
, “
Untersuchungen Zum Sekundären Luftsystem Von Luftstrahltriebwerken
,”
Ph.D. thesis
, Technical University of Munich, Munich, Germany.https://www.researchgate.net/publication/34691015_Untersuchungen_zum_sekundaren_Luftsystem_von_Luftstrahltriebwerken
33.
Xu
,
L.
, and
Grönstedt
,
T.
,
2010
, “
Design and Analysis of an Intercooled Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
114503
.10.1115/1.4000857
34.
Pischinger
,
R.
,
Klell
,
M.
, and
Sams
,
T.
,
2009
,
Thermodynamik Der Verbrennungskraftmaschine
, 3rd ed.,
Springer
,
Wien, Austria and New York
.
35.
Pucher
,
H.
, and
Zinner
,
K.
,
2012
,
Aufladung Von Verbrennungsmotoren: Grundlagen, Berechnung, Ausführungen
, 4th ed.,
Springer Vieweg
,
Berlin and Heidelberg
.
36.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
, 1st ed.,
The Macmillan Press
,
London and Basingstoke, UK
.
37.
Cernea
,
E.
,
1962
,
Freikolben-Verbrennungskraftmaschinen: Theorie—Berechnung—Konstruktion—Anwendung
,
VEB Verlag Technik Berlin
,
Berlin
.
38.
Huber
,
R.
,
1987
, “
Freikolben-Generatoren Für Gasturbinen
,” Report.
39.
VanGerpen
,
J. H.
,
1990
, “
A Two-Stroke Diesel Engine Simulation Program
,” NASA, Cleveland, OH, Report No.
ERI-89179
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a220992.pdf
40.
Schmidt
,
F.
, and
Staudacher
,
S.
,
2015
, “
Generalized Thermodynamic Assessment of Concepts for Increasing the Efficiency of Civil Aircraft Propulsion Systems
,”
ASME
Paper No. GT2015-42447.10.1115/GT2015-42447
41.
Mollenhauer
,
K.
, ed.,
2007
,
Handbuch Dieselmotoren
, 3rd ed.,
VDI-[Buch], Springer
,
Berlin and Heidelberg
.
42.
Wu
,
Y.
,
Wang
,
Y.
,
Zhen
,
X.
,
Guan
,
S.
, and
Wang
,
J.
,
2014
, “
Three-Dimensional CFD (Computational Fluid Dynamics) Analysis of Scavenging Process in a Two-Stroke Free-Piston Engine
,”
J. Energy
,
68
, pp.
167
173
.10.1016/j.energy.2014.02.107
43.
Küttner
,
K.-H.
,
1992
,
Kolbenverdichter: Auslegung, Betrieb, Konstruktion
,
Springer
,
Berlin
.
44.
Pflaum
,
W.
, and
Mollenhauer
,
K.
,
1977
,
Wärmeübergang in Der Verbrennungskraftmaschine
, 3rd ed.,
Die Verbrennungskraftmaschine, Springer
,
Wien, Austria and New York
.
45.
Underwood
,
A. F.
,
1957
, “
The GMR 4-4 HYPREX Engine—A Concept of the Free-Piston Engine for Automotive Use
,”
SAE Trans.
,
65
, pp.
377
391
.10.4271/570032
46.
Frey
,
D. N.
,
Klotsch
,
P.
, and
Egli
,
A.
,
1957
, “
The Automotive Free-Piston-Turbine Engine
,”
SAE Trans.
,
65
, pp.
628
634
.10.4271/570051
47.
Flight Global
,
1954
, “
Napier Nomad—An Engine of Outstanding Efficiency
,”
Flight Global
, pp.
543
551
.
You do not currently have access to this content.