Abstract

A strongly nonlinear rotor-bearing system often has multiple solutions under harmonic excitations and jump phenomena. For example, a hardening nonlinearity may include a jump-down in the acceleration process and jump-up in the deceleration process. It is challenging to measure all of these multiple responses and establish an accurate dynamic model from experimental data to predict these phenomena. This paper used a fixed frequency test method to measure all of these multiple responses under harmonic excitations and developed a novel strategy to characterize and identify nonlinearities in a strongly nonlinear rotor-bearing system based on reconstructing constant response tests from fixed frequency test data. The fixed frequency tests are achieved by monotonically increasing the voltage applied to the exciter at a fixed frequency and using the force drop-out phenomenon through the resonance to control the force applied to the structure. This test method could measure multivalued response curves of a strongly nonlinear rotor-bearing system in a nonrotating state. The constant response tests could be reconstructed from these multivalued response curves. The relationship of equivalent stiffness versus displacement can be established, and hence, the nonlinear stiffness is characterized and identified from constant response tests. A rotor-bearing system with a strongly nonlinear support is used to demonstrate the method, and the nonlinear support stiffness parameters are identified and validated in a nonrotating state. The identified nonlinear rotor-bearing model also could predict the jump phenomena in the acceleration or deceleration process. The results demonstrate the feasibility and effectiveness of the approach, and also show the potential for practical applications in engineering.

References

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley,
New York,  pp.
166
170
.
2.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.10.1016/j.ymssp.2005.04.008
3.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal Process.
,
83
, pp.
2
35
.10.1016/j.ymssp.2016.07.020
4.
Cooper
,
S. B.
,
Di Maio
,
D.
, and
Ewins
,
D. J.
,
2018
, “
Integration of System Identification and Finite Element Modelling of Nonlinear Vibrating Structures
,”
Mech. Syst. Signal Process.
,
102
, pp.
401
430
.10.1016/j.ymssp.2017.09.031
5.
Perinpanayagam, S., Robb, D., Ewins, D. J., and Barragan, J. M., 2004, “Non-Linearities in an Aero-Engine Structure: From Test to Design”
Proceedings of ISMA 2004
, Leuven, Belgium, Sept. 20–22, pp. 3167–3182.https://www.researchgate.net/publication/255623815_NonLinearities_in_an_Aero-Engine_Structure_From_Test_to_Design
6.
Tiwari
,
R.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
,
2004
, “
Identification of Dynamic Bearing Parameters: A Review
,”
Shock Vib. Dig.
,
36
(
2
), pp.
99
124
.10.1177/0583102404040173
7.
Zhang
,
G.
,
Zang
,
C.
, and
Friswell
,
M. I.
,
2020
, “
Measurement of Multivalued Response Curves of a Strongly Nonlinear System by Exploiting Exciter Dynamics
,”
Mech. Syst. Signal Process.
,
140
, p.
106474
.10.1016/j.ymssp.2019.106474
8.
Ferreira
,
J. V.
,
1998
, “
Dynamic Response Analysis of Structures with Nonlinear Components
,”
Ph.D. thesis
, Imperial College London, London, UK.https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/dynamics/40375701.PDF
9.
Ferreira
,
J. V.
,
Serpa
,
A. L.
, and
Prado
,
A. P.
,
2003
, “
Experimental Nonlinear Frequency Response Determination Using the Arc-Length Method,”
Conference & Exposition on Structural Dynamics
,
IMAC-XXI
, Kissimmee, FL, Feb. 3–6, pp.
1563
1567
.
10.
Sieber
,
J.
, and
Krauskopf
,
B.
,
2008
, “
Control Based Bifurcation Analysis for Experiments
,”
Nonlinear Dyn.
,
51
(
3
), pp.
365
377
.10.1007/s11071-007-9217-2
11.
Barton
,
D. A. W.
,
2017
, “
Control-Based Continuation: Bifurcation and Stability Analysis for Physical Experiments
,”
Mech. Syst. Sig. Process
,
84
, pp.
54
64
.10.1016/j.ymssp.2015.12.039
12.
Renson
,
L.
,
Shaw
,
A. D.
,
Barton
,
D. A. W.
, and
Neild
,
S. A.
,
2019
, “
Application of Control-Based Continuation to a Nonlinear Structure With Harmonically Coupled Modes
,”
Mech. Syst. Signal Process.
,
120
, pp.
449
464
.10.1016/j.ymssp.2018.10.008
13.
Peter
,
S.
,
Scheel
,
M.
,
Krack
,
M.
, and
Leine
,
R. L.
,
2018
, “
Synthesis of Nonlinear Frequency Responses With Experimentally Extracted Nonlinear Modes
,”
Mech. Syst. Signal Process.
,
101
, pp.
498
515
.10.1016/j.ymssp.2017.09.014
14.
Zhang
,
G.
,
Zang
,
C.
, and
Friswell
,
M. I.
,
2019
, “
Identification of Weak Nonlinearities in MDOF Systems Based on Reconstructed Constant Response Tests
,”
Arch. Appl. Mech.
,
89
(
10
), pp.
2053
2074
.10.1007/s00419-019-01559-4
15.
Zhang
,
G.
, and
Zang
,
C.
,
2012
, “
Identification and Verification of Structural Nonlinearities Based on Vibration Tests
,”
ISMA2012
, Leuven, Belgium, Sept. 17–19, pp.
2611
2623
.https://www.researchgate.net/publication/297409372_Identification_and_verification_of_structural_nonlinearities_based_on_vibration_tests
16.
Huang
,
S.
,
2008
, “Dynamic Analysis of Assembled Structures with Nonlinearity,”
Ph.D. thesis
, Department of Mechanical Engineering, Imperial College London, London, UK.https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/dynamics/40055709.PDF
17.
Petrov
,
E. P.
,
2016
, “
Analysis of Bifurcations in Multiharmonic Analysis of Nonlinear Forced Vibrations of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102502
.10.1115/1.4032906
18.
Richardson
,
M. H.
, and
Formenti
,
D. L.
,
1982
, “
Parameter Estimation From Frequency Response Measurements Using Rational Fraction Polynomials
,”
Proceedings of the First International Modal Analysis Conference
, Vol.
1
, Orlando, FL, Nov. 8–10, pp.
167
186
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.3592&rep=rep1&type=pdf
19.
Friswell, M. I., Penny, J. E. T., Garvey, S. D., and Lees, A. W., 2010,
Dynamics of Rotating Machines
, Cambridge University Press, New York.10.1017/CBO9780511780509
20.
Mottershead
,
J. E.
,
Link
,
M.
, and
Friswell
,
M. I.
,
2011
, “
The Sensitivity Method in Finite Element Model Updating: A Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2275
2296
.10.1016/j.ymssp.2010.10.012
21.
Dicken
,
V.
,
Maaß
,
P.
,
Menz
,
I.
,
Niebsch
,
J.
, and
Ramlau
,
R.
,
2005
, “
Nonlinear Inverse Unbalance Reconstruction in Rotor Dynamics
,”
Inverse Probl. Sci. Eng.
,
13
(
5
), pp.
507
543
.10.1080/17415970500104234
22.
Cedillo
,
S. G. T.
, and
Bonello
,
P.
,
2016
, “
An Equivalent Unbalance Identification Method for the Balancing of Nonlinear Squeeze-Film Damped Rotordynamic Systems
,”
J. Sound Vib.
,
360
, pp.
53
73
.10.1016/j.jsv.2015.08.028
23.
Cedillo
,
S. G. T.
, and
Bonello
,
P.
,
2014
, “
Unbalance Identification and Balancing of Nonlinear Rotodynamic Systems
,”
ASME
Paper No. GT2014-25290.10.1115/GT2014-25290
You do not currently have access to this content.