Abstract

Auxiliary power units (APUs) are a major driver of maintenance on civil aircraft. However, experimental data and performance simulations are rarely seen in public domain literature. While there is recourse to aircraft engine experience, this does not address the loading and the failure modes of an APU. This work aims to add to the literature, by experimentally investigating a Boeing 747 APU, collecting data under various power settings and ambient conditions, and using these data to calibrate a simple simulation model. This simulation model will subsequently be used to explore failure modes in the APU and hence what sensors may be needed for health monitoring purposes in future work. In this paper, a Boeing 747 APU rig development process and the testing strategy are presented. The rig is validated through a process that includes uncertainty analysis, repeatability tests, consistency tests, and comparison of the collected data with the calibrated simulation model. The results from the rig's validation indicate that the data collected from the APU is independent of its running time or the order of loading cycles imposed on it, i.e., the results are path independent. Changes in pneumatic and electrical power result in small changes in the rotational speed despite the fact that the rotational speed should remain constant. The rotational speed shows a slightly increasing trend when the extracted power rises, and this affects the APU thermodynamic characteristics. This work has resulted in a calibrated simulation model that will be further used in examining fault mode scenarios, as injecting these directly into the rig is seen as high risk.

References

1.
Saxon
,
S.
, and
Weber
,
M.
,
2017
, “
A Better Approach to Airline Costs
,” McKinsey & Company Travel, Transport & Logistics,
McKinsey&Company
, New York, accessed July 18, 2020, https://www.mckinsey.com/industries/travel-transport-and-logistics/our-insights/a-better-approach-to-airline-costs 
2.
Peeters
,
P.
,
Middel
,
J.
, and
Hoolhorts
,
A.
,
2005
, “
Fuel Efficiency of Commercial Aircraft: An Overview of Historical and Future Trends
,” National Aerospace Laboratory NLR,
Amsterdam, The Netherlands
, accessed July 18, 2020, http://www.transportenvironment.org/Publications/prep_hand_out/lid/398 
3.
IATA's Maintenance Cost Technical Group,
2019
, “
Airline Maintenance Cost Executive Summary
,” IATA, Montreal, PQ, Canada, accessed July 18, 2020, https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/ mctg-fy2018-report-public.pdf
4.
Gorinevsky
,
D.
,
Dittmar
,
K.
, and
Mylaraswamy
,
D.
,
2002
, “
Model-Based Diagnostics for an Aircraft Auxiliary Power Unit
,”
IEEE International Conference on Control Applications
,
E.
Nwadiogbu
, ed.,
Glasgow, Scotland
, Sept. 18–20.10.1109/CCA.2002.1040188
5.
Fleuti
,
E.
, and
Hofman
,
P.
,
2005
, “
Aircraft APU Emissions at Zurich Airport
,” Unique (Flughafen Zürich AG), Zurich, Switzerland, accessed July 18, 2020, https://www.flughafen-zuerich.ch/service-sites/search?search_string=APU&offset=0&type=Document
6.
Dellaert
,
S. N. C.
,
Hulskotte
,
I. J. H. J.
,
2017
, “
Emissions of Air Pollutants From Civil Aviation in The Netherlands
,” Earth, Life & Social Sciences, Utrecht, The Netherlands, TNO Report No.
2017 R10055
.http://www.emissieregistratie.nl/erpubliek/documenten/Lucht%20(Air)/Verkeer%20en%20Vervoer%20(Transport)/Overig%20Verkeer%20en%20Vervoer/Dellaert%20&%20Hulskotte%20-%202017%20-%20Emissions%20of%20air%20pollutants%20from%20civil%20avi....pdf
7.
Kinsey
,
J. S.
,
Timko
,
M. T.
,
Herndon
,
S. C.
,
Wood
,
E. C.
,
Yu
,
Z.
,
Miake-Lye
,
R. C.
,
Lobo
,
P.
,
Whitefield
,
P.
,
Hagen
,
D.
,
Wey
,
C.
,
Anderson
,
B. E.
,
Beyersdorf
,
A. J.
,
Hudgins
,
C. H.
,
Thornhill
,
K. L.
,
Winstead
,
E.
,
Howard
,
R.
,
Bulzan
,
D. I.
,
Tacina
,
K. B.
, and
Knighton
,
W. B.
,
2012
, “
Determination of the Emissions From an Aircraft Auxiliary Power Unit (APU) During the Alternative Aviation Fuel Experiment (AAFEX)
,”
J. Air Waste Manag. Assoc.
,
62
(
4
), pp.
420
430
.10.1080/10473289.2012.655884
8.
Walker
,
C.
,
2018
, “
Heathrow Airport 2017 Emission Inventory
,” Ricardo Energy and Environment, Cheshire, UK, Report No.
ED11486
.http://www.heathrowairwatch.org.uk/documents/Heathrow_Airport_2017_Emission_Inventory_Issue_1.pdf
9.
National Transport Safety Board
,
2009
, “
Loss of Thrust in Both Engines After Encountering a Flock of Birds and Subsequent Ditching on the Hudson River
,” National Transport Safety Board, Washington, DC, Report No.
NTSB/AAR-10/03 PB2010-910403
.http://i2.cdn.turner.com/cnn/2016/images/09/07/flight.1548.ntsb..pdf
10.
Siebel
,
T.
,
Zanger
,
J.
,
Huber
,
A.
,
Aigner
,
M.
,
Knobloch
,
K.
, and
Bake
,
F.
,
2018
, “
Experimental Investigation of Cycle Properties, Noise, and Air Pollutant Emissions of an APS3200 Auxiliary Power Unit
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), pp.
1
9
.10.1115/1.4038159
11.
Zanger
,
J.
,
Krummrein
,
T.
,
Siebel
,
T.
, and
Roth
,
J.
,
2019
, “
Characterization of an Aircraft Auxiliary Power Unit Test Rig for Cycle Optimization Studies
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), pp.
1
9
.10.1115/1.4041119
12.
Aus Der Wiesche
,
S.
,
2012
, “
A Mobile Test Rig for Micro Gas Turbines Based on a Thermal Power Measurement Approach
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112301
.10.1115/1.4007201
13.
Alejandro
,
D.
,
Novelo
,
B.
,
Igie
,
U.
,
Prakash
,
V.
, and
Szyma
,
A.
,
2019
, “
Experimental Investigation of Gas Turbine Compressor Water Injection for NOx Emission Reductions
,”
Energy
,
176
, pp.
235
248
.10.1016/j.energy.2019.03.187
14.
Li
,
H.
,
Altaher
,
M.
,
Wilson
,
C.
,
Blakey
,
S.
,
2013
, “
Influence of Fuel Composition, Engine Power and Operation Mode
,”
ASME
Paper No. GT2013-94854.10.1115/GT2013-94854
15.
Owen
,
A. K.
,
Daugherty
,
A.
,
Garrard
,
D.
,
Reynolds
,
H. C.
, and
Wright
,
R. D.
,
1999
, “
A Parametric Starting Study of an Axial-Centrifugal Gas Turbine Engine Using a One-Dimensional Dynamic Engine Model and Comparisons to Experimental Results: Part I—Model Development and Facility Description
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
377
383
.10.1115/1.2818484
16.
Owen
,
A. K.
,
Daugherty
,
A.
,
Garrard
,
D.
,
Reynolds
,
H. C.
, and
Wright
,
R. D.
,
1999
, “
A Parametric Starting Study of an Axial-Centrifugal Gas Turbine Engine Using a One-Dimensional Dynamic Engine Model and Comparisons to Experimental Results: Part II—Simulation Calibration and Trade-Off Study
,”
ASME J. Eng. Gas Turbine Power
,
121
(
3
), pp.
384
393
.10.1115/1.2818485
17.
Henke
,
M.
,
Klempp
,
N.
,
Hohloch
,
M.
,
Monz
,
T.
,
2015
, “
Validation of a T100 Micro Gas Turbine Steady-State Simulation Tool
,”
ASME
Paper No. GT2015-42090.10.1115/GT2015-42090
18.
Plis
,
M.
, and
Rusinowski
,
H.
,
2017
, “
Predictive, Adaptive Model of PG 9171E Gas Turbine Unit Including Control Algorithms
,”
Energy
,
126
, pp.
247
255
.10.1016/j.energy.2017.03.027
19.
Roumeliotis
,
I.
,
Aretakis
,
N.
, and
Alexiou
,
A.
,
2017
, “
Industrial Gas Turbine Health and Performance Assessment With Field Data
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051202
.10.1115/1.4034986
20.
Pablo
,
J.
,
Bootello
,
N.
, and
Price
,
H.
,
2020
, “
Improved Method for Gas-Turbine Off- Design Performance Adaptation Based on Field Data
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041001
.10.1115/1.404447010.1115/1.4044470
21.
Li
,
Y. G.
,
Marinai
,
L.
,
Gatto
,
E. L.
,
Pachidis
,
V.
, and
Philidis
,
P.
,
2009
, “
Multiple-Point Adaptive Performance Simulation Tuned to Aeroengine Test-Bed Data
,”
J. Propuls. Power
,
25
(
3
), pp.
635
641
.10.2514/1.38823
22.
Honeywell
, “
Honeywell Differential Pressure Transducer P/N:142PC01D
,” Honeywell International, Charlotte, NC, accessed July 18, 2020, https://datasheet.octopart.com/142PC01D-Honeywell-datasheet-11804713.pdf 
23.
Omega
,
2020
, “
Omega Pressure Transducers P/N: PX119
,” Omega Engineering, Norwalk, CT, accessed June 9, 2020, https://br.omega.com/omegaFiles/pressure/pdf/PX119.pdf
24.
National Instruments,
2020
, “
Thermocouple Accuracy Table by Type and Temperature
,” National Instruments, Austin, TX, accessed June 9, https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8kSSAS&l=en-GR
25.
Omega
,
2020
, “
Omega Flow Meter, P/N: FTB1300
,” Omega Engineering, Norwalk, CT, accessed June 9, https://br.omega.com/omegaFiles/green/pdf/FTB1300_SERIES.pdf
26.
Beyer
,
M.
,
2008
, “
Do You Know the Accuracy of Your Pressure Sensor ?
,” Sensor Magazine, pp.
54
56
, WIKA Alexander Wiegand GmbH & Co. KG, Bavaria, Germany, accessed July 18, 2020, https://en.wika.com/upload/MS_TA_0408_en_co_56493.pdf
27.
Kirkup
,
L.
, and
Frenkel
,
B.
,
2006
,
An Introduction to Unceratinty Measurement Using the GUM
,
Cambridge University Press
,
New York
.
28.
Bird
,
J.
, and
Grabe
,
W.
,
1991
, “
Humidity Effects on Gas Turbine Performance
,”
ASME
Paper No. 91-GT-329
. 10.1115/91-GT-329
29.
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
Litt
,
J. S.
, and
T. H.
,
Guo
, “
A Process for the Creation of T-MATS Propulsion System Models From NPSS Data
,” National Aeronautics and Space Administration, Cleveland, OH, Report No.
NASA/TM-2014-218409
.10.2514/6.2014-3931
30.
Zinnecker
,
A. M.
,
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
2014
, “
Development of a Twin-Spool Turbofan Engine Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)
,”
AIAA
Paper No.
2014-3930. 10.2514/6.2014-3930
31.
Davenport
,
W. R.
,
1974
, “
Impact of Turbine Modulation on Variable-Cycle Engine Performance—Phase IV: Additional Design and Fabrication Engine Modification, Engine Modification and Altitude Test Part IIIb
,” AiResearch Manufacturing Company of Arizona, Phoenix, Arizona, Report No.
F33615-71-C-1625
.https://apps.dtic.mil/sti/pdfs/ADA002546.pdf
32.
Condon
,
P.
,
2007
,
Flying the Classic Learjet: A Pilot Training Manual for the Learjet 35A/36A Aircraft
,
Flying the Classic Learjet
, Peter D. Condon (Individual).
33.
Snyder
,
C. A.
,
Thurman
,
D. R.
,
2010
, “
Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)
,” National Aeronautics and Space Administartion, Washington, DC, Report No.
NASA/TM-2010-216089
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100011336.pdf
34.
Schlein
,
B.
,
1985
, “
Gas Turbine Combustion Efficiency
,”
ASME
Paper No. 85-IGT-121.
35.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Huebsch
,
W. W.
,
2013
,
Fundamentals of Fluid Mechanics Seventh Edition
, 7th ed.,
A. P.
Rothmayer
, ed.,
Wiley
, Hoboken, NJ.
36.
Richman
,
J. W.
, and
Azad
,
R. S.
,
1973
, “
Developing Turbulent Flow in Smooth Pipes
,”
Appl. Sci. Res.
,
28
(
1
), pp.
419
441
.10.1007/BF00413081
37.
Wildi
,
T.
,
2014
,
Electrical Machines, Drives, and Power Systems
, 6th ed.,
Pearson Educational Limited
,
London
, UK.
You do not currently have access to this content.