Abstract

Fuel injection plays an important role in liquid-fueled gas turbine combustion. The strong interdependence of liquid breakup and atomization, turbulent dispersion of these droplets, droplet evaporation, and fuel–air mixing make the spray modeling an extremely challenging task. The physical processes are even more difficult to predict for alternative fuels with different thermophysical properties. In this study, spray flames of unheated and preheated vegetable oil (VO) produced by an air-blast (AB) atomizer in a swirl stabilized combustor are investigated experimentally. Phase Doppler particle analyzer (PDPA) is used to measure the instantaneous diameter and axial velocity of droplets at different axial and radial locations in both flames. Experiments are conducted at an equivalence ratio of 0.79 and atomizing air to liquid ratio by a mass of 2.5 to obtain stable VO flames. Radial profiles of mean axial velocity and Sauter mean diameter (SMD) are presented to show the effect of fuel preheating. Joint probability density functions (joint PDF) are presented to show the correlation between droplet diameter and axial velocity. Results are analyzed to show that both sprays exhibit self-similar droplet diameter distributions at different axial and radial locations when normalized properly. Thus, the vast amount of PDPA data in the spray can be reduced to simple distribution functions. A method to reconstruct the joint PDF from experimentally determined distribution functions is presented. We envision that the joint PDF approach outlined in this study could be implemented in high-fidelity computational fluid dynamic models to improve spray predictions in future studies.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, “
Alternative Fuels
,”
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
, pp.
443
511
.
2.
Lefebvre
,
A. H.
,
1989
,
Atomization and Sprays
,
Hemispheres
,
New York
, pp.
136
141
.
3.
Nakamura
,
S.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2006
, “
The Effect of Liquid-Fuel Preparation on Gas Turbine Emissions
,”
ASME
Paper No. GT-2006-90730.10.1115/1.2771564
4.
Law
,
C. K.
,
1982
, “
Recent Advances in Droplet Vaporization and Combustion
,”
Prog. Energy Combust. Sci.
,
8
(
3
), pp.
171
201
.10.1016/0360-1285(82)90011-9
5.
Sirignano
,
W. A.
, and
Mehring
,
C.
,
2000
, “
Review of Theory of Distortion and Disintegration of Liquid Streams
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
609
655
.10.1016/S0360-1285(00)00014-9
6.
Bolszo
,
C. D.
, and
Mcdonell
,
V. G.
,
2009
, “
Evaluation of Plain-Jet Air Blast Atomization and Evaporation of Alternative Fuels in a Small Gas Turbine Engine Application
,”
Atomization Sprays
,
19
(
8
), pp.
771
785
.10.1615/AtomizSpr.v19.i8.50
7.
Babinsky
,
E.
, and
Sojka
,
P. E.
,
2002
, “
Modeling Drop Size Distributions
,”
Prog. Energy Combust. Sci.
,
28
(
4
), pp.
303
329
.10.1016/S0360-1285(02)00004-7
8.
Jones
,
W. P.
,
Lyra
,
S.
, and
Navarro-Martinez
,
S.
,
2011
, “
Large Eddy Simulation of a Swirl Stabilized Spray Flame
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2153
2160
.10.1016/j.proci.2010.07.032
9.
Ukai
,
S.
,
Kronenburg
,
A.
, and
Stein
,
O. T.
,
2013
, “
LES-CMC of a Dilute Acetone Spray Flame
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1643
1650
.10.1016/j.proci.2012.05.023
10.
Chiu
,
H. H.
,
2000
, “
Advances and Challenges in Droplet and Spray Combustion Toward a Unified Theory of Droplet Aerothermochemistry
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
381
416
.10.1016/S0360-1285(00)00016-2
11.
Heye
,
C.
,
Raman
,
V.
, and
Masri
,
A. R.
,
2013
, “
LES/Probability Density Function Approach for the Simulation of an Ethanol Spray Flame
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1633
1641
.10.1016/j.proci.2012.06.107
12.
Moliere
,
M.
,
2005
, “
Expanding Fuel Flexibility for Gas Turbines
,”
Proc. Inst. of Mech. Eng., Part A: Power Energy
,
219
, pp.
109
119
.10.1243/095765005X6818
13.
Tyner
,
W. E.
,
2008
, “
The U.S. Ethanol and Biofuels Boom: Its Origins, Current Status, and Future Prospects
,”
Bioscience
,
58
(
7
), pp.
646
653
.10.1641/B580718
14.
Balat
,
M.
,
2007
, “
An Overview of Biofuels and Policies in the European Union
,”
Energy Sources Part B
,
2
(
2
), pp.
167
181
.10.1080/15567240500402701
15.
Duncan
,
M.
,
2003
, “
U.S. Federal Initiatives to Support Biomass Research and Development
,”
J. Ind. Ecol.
,
7
(
3–4
), pp.
193
201
.10.1162/108819803323059479
16.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
.10.1016/j.pecs.2006.08.003
17.
Bari
,
S.
,
Lim
,
T. H.
, and
Yu
,
C. W.
,
2002
, “
Effects of Preheating of Crude Palm Oil (CPO) on Injection System, Performance and Emission of a Diesel Engine
,”
Renewable Energy
,
27
(
3
), pp.
339
351
.10.1016/S0960-1481(02)00010-1
18.
Panchasara
,
H. V.
,
Simmons
,
B. M.
,
Agrawal
,
A. K.
,
Spear
,
S. K.
, and
Daly
,
D. T.
,
2009
, “
Combustion Performance of Biodiesel and Diesel-Vegetable Oil Blends in a Simulated Gas Turbine Burner
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031503
.10.1115/1.2982137
19.
Mendez
,
C.
,
Parthasarathy
,
R.
, and
Gollahalli
,
S.
,
2014
, “
Performance and Emission Characteristics of Butanol/Jet a Blends in a Gas Turbine Engine
,”
Appl. Energy
,
118
, pp.
135
40
.10.1016/j.apenergy.2013.12.011
20.
Sallevelt
,
J.
,
Beran
,
M.
,
Axelsson
,
L.
,
Pozarlik
,
A. K.
, and
Brem
,
G.
,
2014
, “
Bioethanol Combustion in an Industrial Gas Turbine Combustor: Simulations and Experiments
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
071501
.10.1115/1.4026529
21.
Sallevelt
,
J.
,
Gudde
,
J. E. P.
,
Pozarlik
,
A. K.
, and
Brem
,
G.
,
2014
, “
The Mpact of Spray Quality on the Combustion of a Viscous Biofuel in a Micro Gas Turbine
,”
Appl. Energy
,
132
, pp.
575
585
.10.1016/j.apenergy.2014.07.030
22.
Boggavarapu
,
P.
, and
Ravikrishna
,
R. V.
,
2018
, “
A Comparison of Evaporating Spray Structure of Jatrophamethyl Ester and Diesel, and Surrogate Fuels
,”
Atomization Sprays
,
28
(
9
), pp.
797
809
.10.1615/AtomizSpr.2018026885
23.
Li
,
X.
, and
Tankin
,
R.
,
1987
, “
Droplet Size Distribution: A Derivation of a Nukiyama–Tanasawa Type Distribution Function
,”
Combust. Sci. Technol.
,
56
(
1
), pp.
65
76
.10.1080/00102208708947081
You do not currently have access to this content.