Abstract

Due to recent regulation changes to restricted fuel usage in various motor-sport events, motor-sport engine manufacturers have started to focus on improving the thermal efficiency and often claim thermal efficiency figures well above equivalent road car engines. With limited fuel allowance, motor-sport engines are operated with a lean air–fuel mixture to benefit from higher cycle efficiency, requiring an ignition system that is suitable for the lean mixture. Prechamber ignition is identified as a promising method to improve lean limit and has the potential to reduce end gas auto-ignition. This paper analyses the full-load performance of a motor-sport lean-burn gasoline direct injection (GDI) engine and a passive prechamber is developed with the aid of a computational fluid dynamics (CFD) tool. The finalized prechamber design benefited in a significant reduction in burn duration, reduced cyclic variation, knock limit extension, and higher performance.

References

1.
Whiting
,
C.
,
2018
, “
FIA Formula One World Championship Regulations
,” FIA, Paris, France, accessed July 20, 2020, https://www.fia.com/regulation/category/110
2.
International Energy Agency
,
2012
,
Energy Technology Perspectives 2012: Pathways to a Clean Energy System
,
International Energy Agency
, Paris, France,
Report
.https://www.iea.org/reports/energy-technology-perspectives-2012
3.
Toulson
,
E.
,
Schock
,
H. J.
, and
Attard
,
W. P.
,
2010
, “
A Review of Prechamber Initiated Jet Ignition Combustion Systems
,”
SAE
Paper No. 2010-01-2263.10.4271/2010-01-2263
4.
Toulson
,
E.
, and
Thelen
,
B. C.
,
2017
, “
A Computational Study on the Effect of the Orifice Size on the Performance of a Turbulent Jet Ignition System
,”
Proc. Inst. Mech. Eng., Part D
,
231
(
4
), pp.
536
554
.10.1177/0954407016659199
5.
Thelen
,
B. C.
, and
Toulson
,
E.
,
2016
, “
A Computational Study of the Effects of Spark Location on the Performance of a Turbulent Jet Ignition System
,”
SAE
Paper No. 2016-01-0608.10.4271/2016-01-0608
6.
Gussak
,
L. A.
,
Turkish
,
M. C.
, and
Siegla
,
D. C.
,
1975
, “
High Chemical Activity of Incomplete Combustion Products and a Method of Prechamber Torch Ignition for Avalanche Activation of Combustion in Internal Combustion Engines
,”
SAE
Paper No. 750890.10.4271/750890
7.
Kettner
,
M.
,
Rothe
,
M.
,
Velji
,
A.
,
Spicher
,
U.
,
Kuhnert
,
D.
, and
Latsch
,
R.
,
2005
, “
A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines
,”
SAE
Paper No. 2005-01-3688.10.4271/2005-01-3688
8.
Attard
,
W. P.
, and
Blaxill
,
H.
,
2011
, “
A Single Fuel Pre-Chamber Jet Ignition Powertrain Achieving High Load, High Efficiency and Near Zero NOx Emissions
,”
SAE
Paper No. 2011-01-2023.10.4271/2011-01-2023
9.
Attard
,
W. P.
,
Blaxill
,
H.
,
Anderson
,
E. K.
, and
Litke
,
P.
,
2012
, “
Knock Limit Extension With a Gasoline Fueled Pre-Chamber Jet Igniter in a Modern Vehicle Powertrain
,”
SAE
Paper No. 2012-01-1143.10.4271/2012-01-1143
10.
Attard
,
W. P.
, and
Blaxill
,
H.
,
2012
, “
A Lean Burn Gasoline Fueled Pre-Chamber Jet Ignition Combustion System Achieving High Efficiency and Low NOx at Part Load
,”
SAE
Paper No. 2012-01-1146.10.4271/2012-01-1146
11.
Attard
,
W. P.
, and
Blaxill
,
H.
,
2012
, “
A Gasoline Fueled Pre-Chamber Jet Ignition Combustion System at Unthrottled Conditions
,”
SAE
Paper No. 2012-01-0386.10.4271/2012-01-0386
12.
Heywood
,
J. B.
,
2006
,
Internal Combustion Engine Fundamentals
, Vol.
2
, Mc-Graw Hill, New York. 
13.
Geiger
,
J.
,
Pischinger
,
S.
, and
Böwing
,
R.
,
1999
, “
Ignition Systems for Highly Diluted Mixtures in SI-Engines
,”
SAE
Paper No. 1999-01-0799.10.4271/1999-01-0799
14.
Stone
,
R.
,
2012
,
Introduction to Internal Combustion Engines
, 4th ed.,
Palgrave Macmillan
, London, UK. 
15.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines a Literature Survey
,”
SAE
Paper No. 940987.10.4271/940987
16.
Truffin
,
K.
,
Angelberger
,
C.
,
Richard
,
S.
, and
Pera
,
C.
,
2015
, “
Using Large-Eddy Simulation and Multivariate Analysis to Understand the Sources of Combustion Cyclic Variability in a Spark-Ignition Engine
,”
Combust. Flame
,
162
(
12
), pp.
4371
4390
.10.1016/j.combustflame.2015.07.003
17.
Young
,
M. B.
,
1981
, “
Cyclic Dispersion in the Homogeneous-Charge Spark-Ignition Engine–A Literature Survey
,”
SAE
Paper No. 810020.10.4271/810020
18.
Chinnathambi
,
P.
,
Bunce
,
M.
, and
Cruff
,
L.
,
2015
, “
RANS Based Multidimensional Modeling of an Ultra-Lean Burn Pre-Chamber Combustion System With Auxiliary Liquid Gasoline Injection
,”
SAE
Paper No. 2015-01-0386.10.4271/2015-01-0386
19.
Adomeit
,
P.
,
Lang
,
O.
,
Pischinger
,
S.
,
Aymanns
,
R.
,
Graf
,
M.
, and
Stapf
,
G.
,
2007
, “
Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation
,”
SAE
Paper No. 2007-01-1412.10.4271/2007-01-1412
20.
Goryntsev
,
D.
,
Sadiki
,
A.
,
Klein
,
M.
, and
Janicka
,
J.
,
2009
, “
Large Eddy Simulation Based Analysis of the Effects of Cycle-to-Cycle Variations on Air-Fuel Mixing in Realistic DISI IC-Engines
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2759
2766
.10.1016/j.proci.2008.06.185
21.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2018
,
CONVERGE 2.4 Manual
,
Convergent Science
,
Madison, WI
.
22.
Senecal
,
P. K.
,
Pomraning
,
E.
, and
Richards
,
K. J.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. 2003-01-1043.10.4271/2003-01-1043
23.
Liu
,
Y. D.
,
Jia
,
M.
,
Xie
,
M. Z.
, and
Pang
,
B.
,
2013
, “
Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel With Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation
,”
Energy Fuels
, 27(8), pp. 4899–4909.10.1021/ef4009955
24.
Marinov
,
N. M.
,
1999
, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
Int. J. Chem. Kinetics
, 31(3), pp.
183
220
.https://doi.org/10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
25.
Budak
,
O.
,
Hoppe
,
F.
,
Heuser
,
B.
,
Pischinger
,
S.
,
Burke
,
U.
, and
Heufer
,
A.
,
2018
, “
Hot Surface Pre-Ignition in Direct-Injection Spark-Ignition Engines: Investigations With Tailor-Made Fuels From
,”
Biomass. Spec. Issue Artic. Int. J Engine Res.
,
19
(
1
), pp.
45
54
.10.1177/1468087417729238
26.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2014
, “
Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement
,”
SAE
Paper No. 2014-01-1116.10.4271/2014-01-1116
27.
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Enaux
,
B.
,
Dugué
,
V.
, and
Poinsot
,
T.
,
2012
, “
Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine
,”
Combust. Flame
,
159
(
4
), pp.
1562
1575
.10.1016/j.combustflame.2011.11.018
28.
Richards
,
K.
, Probst, D.,
Pomraning
,
E.
, Senecal, P. K., and
Scarcelli
,
R.
,
2014
, “
The Observation of Cyclic Variation in Engine Simulations When Using RANS Turbulence Modeling
,”
ASME
Paper No. ICEF2014-5605.10.1115/ICEF2014-5605
29.
Jupudi
,
R. S.
,
Finney
,
C. E.
,
Primus
,
R.
,
Wijeyakulasuriya
,
S.
,
Klingbeil
,
A. E.
,
Tamma
,
B.
, and
Stoyanov
,
M. K.
,
2016
, “
Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines
,”
SAE
Paper No. 2016-01-0798. 10.4271/2016-01-0798
30.
Scarcelli
,
R.
,
Richards
,
K.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Wallner
,
T.
, and
Sevik
,
J.
,
2016
, “
Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations
,”
SAE
Paper No. 2016-01-0593.10.4271/2016-01-0593
You do not currently have access to this content.