Abstract

The high-fidelity computational fluid dynamics (CFD) simulations of a complete wind turbine model usually require significant computational resources. It will require much more resources if the fluid–structure interactions (FSIs) between the blade and the flow are considered, and it has been the major challenge in the industry. The aeromechanical analysis of a complete wind turbine model using a high-fidelity CFD method is discussed in this paper. The distinctiveness of this paper is the application of the nonlinear frequency domain solution method to analyze the forced response and flutter instability of the blade as well as to investigate the unsteady flow field across the wind turbine rotor and the tower. This method also enables the aeromechanical simulations of wind turbines for various interblade phase angles in a combination with a phase shift solution method. Extensive validations of the nonlinear frequency domain solution method against the conventional time domain solution method reveal that the proposed frequency domain solution method can reduce the computational cost by one to two orders of magnitude.

References

1.
Hansen
,
M. H.
,
2007
, “
Aeroelastic Instability Problems for Wind Turbines
,”
Wind Energy
,
10
(
6
), pp.
551
577
.10.1002/we.242
2.
Wang
,
Q.
,
Wang
,
J.
,
Chen
,
J.
,
Luo
,
S.
, and
Sun
,
J.
,
2015
, “
Aerodynamic Shape Optimized Design for Wind Turbine Blade Using New Airfoil Series
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
2871
2882
.10.1007/s12206-015-0616-x
3.
Wang
,
L.
,
Liu
,
X.
,
Renevier
,
N.
,
Stables
,
M.
, and
Hall
,
G. M.
,
2014
, “
Nonlinear Aeroelastic Modelling for Wind Turbine Blades Based on Blade Element Momentum Theory and Geometrically Exact Beam Theory
,”
Energy
,
76
, pp.
487
501
.10.1016/j.energy.2014.08.046
4.
Fernandez
,
G.
,
Usabiag
,
H.
, and
Vandepit
,
D.
,
2018
, “
An Efficient Procedure for the Calculation of the Stress Distribution in a Wind Turbine Blade Under Aerodynamic Loads
,”
J. Wind Eng. Ind. Aerodyn.
,
172
, pp.
42
54
.10.1016/j.jweia.2017.11.003
5.
Rafiee
,
R.
,
Tahani
,
M.
, and
Moradi
,
M.
,
2016
, “
Simulation of Aeroelastic Behavior in a Composite Wind Turbine Blade
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
60
69
.10.1016/j.jweia.2016.01.010
6.
Murua
,
J.
,
Palacios
,
R.
, and
Graham
,
J. M. R.
,
2012
, “
Applications of the Unsteady Vortex-Lattice Method in Aircraft Aeroelasticity and Flight Dynamics
,”
Prog. Aerosp. Sci.
,
55
, pp.
46
72
.10.1016/j.paerosci.2012.06.001
7.
Riziotis
,
V. A.
,
Manolas
,
D. I.
, and
Voutsinas
,
S. G.
,
2011
, “
Free-Wake Aeroelastic Modelling of Swept Rotor Blades
,”
EWEA Conference
,
Brussels, Belgium
,
Mar. 14–17
.https://www.researchgate.net/publication/273380627_Advanced_Aeroelastic_Modelling_of_Swept_Rotor_Blades
8.
Jeong
,
M. S.
,
Kim
,
S. W.
,
Lee
,
I.
,
Yoo
,
S. J.
, and
Park
,
K. C.
,
2013
, “
The Impact of Yaw Error on Aeroelastic Characteristics of a Horizontal Axis Wind Turbine Blade
,”
Renewable Energy
,
60
, pp.
256
268
.10.1016/j.renene.2013.05.014
9.
Wang
,
L.
,
Liu
,
X.
, and
Kolios
,
A.
,
2016
, “
State of the Art in the Aero-Elasticity of Wind Turbine Blades: Aero-Elastic Modelling
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
195
210
.10.1016/j.rser.2016.06.007
10.
O'Brien
,
J. M.
,
Young
,
T. M.
,
O'Mahoney
,
D. C.
, and
Griffin
,
P. C.
,
2017
, “
Horizontal Axis Wind Turbine Research: A Review of Commercial CFD, FE Codes and Experimental Practices
,”
Prog. Aerosp. Sci.
,
92
, pp.
1
24
.10.1016/j.paerosci.2017.05.001
11.
Kaya
,
M. N.
,
Kose
,
F.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2018
, “
Aerodynamic Performance of a Horizontal Axis Wind Turbine With Forward and Backward Swept Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
176
, pp.
166
173
.10.1016/j.jweia.2018.03.023
12.
Wang
,
L.
,
Quant
,
R.
, and
Kolios
,
A.
,
2016
, “
Fluid Structure Interaction Modelling of Horizontal-Axis Wind Turbine Blades Based on CFD and FEA
,”
J. Wind Eng. Ind. Aerodyn.
,
158
, pp.
11
25
.10.1016/j.jweia.2016.09.006
13.
Yu
,
D. O.
, and
Kwon
,
O. J.
,
2014
, “
Predicting Wind Turbine Blade Loads and Aeroelastic Response Using a Coupled CFD-CSD Method
,”
Renewable Energy
,
70
, pp.
184
196
.10.1016/j.renene.2014.03.033
14.
Dai
,
L.
,
Zhou
,
Q.
,
Zhang
,
Y.
,
Yao
,
S.
,
Kang
,
S.
, and
Wang
,
X.
,
2017
, “
Analysis of Wind Turbine Blades Aeroelastic Performance Under Yaw Conditions
,”
J. Wind Eng. Ind. Aerodyn.
,
171
, pp.
273
287
.10.1016/j.jweia.2017.09.011
15.
He
,
L.
, and
Ning
,
W.
,
1998
, “
An Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
16.
Hall
,
K.
, and
Lorence
,
C.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME J. Turbomach.
,
115
(
4
), pp.
800
809
.10.1115/1.2929318
17.
Hall
,
K.
,
Thomas
,
J.
, and
Clark
,
W.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
18.
He
,
L.
,
2008
, “
Harmonic Solution of Unsteady Flow Around Blades With Separation
,”
AIAA J.
,
46
(
6
), pp.
1299
1307
.10.2514/1.28656
19.
Rahmati
,
M. T.
,
He
,
L.
, and
Wells
,
R. G.
,
2010
, “
Interface Treatment for Harmonic Solution in Multi-Row Aeromechanic Analysis
,”
ASME
Paper No. GT2010-23376.10.1115/GT2010-23376
20.
Rahmati
,
M. T.
,
He
,
L.
, and
Li
,
Y. S.
,
2012
, “
Multi-Row Interference Effects on Blade Aeromechanics in Compressor and Turbine Stages
,”
13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(
ISUAAAT
),
Tokyo, Japan
,
Sept. 11–14
.https://researchportal.northumbria.ac.uk/en/publications/multirow-interference-effects-on-blade-aeromechanics-in-compressor-and-turbine-stages(dab43625-b18f-45c8-a9db-b89fad5cbe22)/export.html
21.
Rahmati
,
M. T.
,
He
,
L.
, and
Li
,
Y. S.
,
2015
, “
The Blade Profile Orientations Effects on the Aeromechanics of Multirow Turbomachines
,”
ASME J Eng. Gas Turbines Power
,
138
(
6
), p.
062606
.10.1115/1.4030569
22.
Rahmati
,
M. T.
,
He
,
L.
,
Wang
,
D. X.
,
Li
,
Y. S.
,
Wells
,
R. G.
, and
Krishnababu
,
S. K.
,
2014
, “
Nonlinear Time and Frequency Domain Method for Multi-Row Aeromechanical Analysis
,”
ASME J. Turbomach.
,
136
(
4
), p.
041010
.10.1115/1.4024899
23.
Howison
,
J.
,
Thomas
,
J.
, and
Ekici
,
K.
,
2018
, “
Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method
,”
Wind Energy
,
21
(
4
), pp.
226
241
.10.1002/we.2157
24.
Drofelnik
,
J.
,
Ronch
,
A. D.
, and
Campobasso
,
M. S.
,
2018
, “
Harmonic Balance Navier-Stokes Aerodynamic Analysis of Horizontal Axis Wind Turbines in Yawed Wind
,”
Wind Energy
,
21
(
7
), pp.
515
530
.10.1002/we.2175
25.
Horcas
,
S. G.
,
Debrabandere
,
F.
,
Tartinville
,
B.
,
Hirsch
,
C.
, and
Coussement
,
G.
,
2017
, “
Rotor-Tower Interactions of DTU 10 MW Reference Wind Turbine With a Non-Linear Harmonic Method
,”
Wind Energy
,
20
(
4
), pp.
619
636
.10.1002/we.2027
26.
Horcas
,
S. G.
,
Debrabandere
,
F.
,
Tartinville
,
B.
,
Hirsch
,
C.
, and
Coussement
,
G.
,
2017
, “
Extension of the Non-Linear Harmonic Method for the Study of the Dynamic Aeroelasticity of Horizontal Axis Wind Turbines
,”
J. Fluids Struct.
,
73
, pp.
100
124
.10.1016/j.jfluidstructs.2017.06.008
27.
Win Naung
,
S.
,
Rahmati
,
M. T.
, and
Farokhi
,
H.
,
2019
, “
Aerodynamic Analysis of a Wind Turbine With Elevated Inflow Turbulence and Wake Using Harmonic Method
,”
ASME
Paper No. OMAE2019-96769.10.1115/OMAE2019-96769
28.
Win Naung
,
S.
,
Rahmati
,
M. T.
, and
Farokhi
,
H.
,
2019
, “
Aeromechanical Analysis of Wind Turbines Using Non-Linear Harmonic Method
,”
ASME
Paper No. OMAE2019-96256. 10.1115/OMAE2019-96256
29.
Schepers
,
J. G.
,
Pascal
,
L.
, and
Snel
,
H.
,
2010
, “
First Results From Mexnext: Analysis of Detailed Aerodynamic Measurements on a 4.5 m Diameter Rotor Placed in the Large German Dutch Wind Tunnel DNW
,” The European Wind Energy Conference and Exhibition (
EWEC
), Warsaw, Poland, Apr. 20–23.https://www.researchgate.net/publication/290385506_First_results_from_Mexnext_Analysis_of_detailed_aerodynamic_measurements_on_a_45_m_diameter_rotor_placed_in_the_large_German_Dutch_Wind_Tunnel_DNW
30.
Schepers
,
J. G.
,
Boorsma
,
K.
, and
Munduate
,
X.
,
2012
, “
Final Results From Mexnext-I: Analysis of Detailed Aerodynamic Measurements on a 4.5 m Diameter Rotor Placed in the Large German Dutch Wind Tunnel DNW
,”
The Science of Making Torque
,
Oldenburg, Germany
,
Oct. 9–11
.https://iopscience.iop.org/article/10.1088/1742-6596/555/1/012089
31.
Schepers
,
J. G.
, and
Snel
,
H.
,
2007
, “
Model Experiments in Controlled Conditions
,” Energy Research Centre of the Netherlands, LE Petten, The Netherlands, Report No.
ECN-E-07-042
.https://publications.tno.nl/publication/34628817/8d6E4g/e07042.pdf
32.
Schepers
,
J. G.
,
Boorsma
,
K.
,
Kim
,
C.
, and
Cho
,
T.
,
2012
, “
Final Report of IEA Task 29, Mexnext (Phase 1): Analysis of Mexico Wind Tunnel Measurements
,” Energy Research Centre of the Netherlands, LE Petten, The Netherlands, Report No.
ECN-E-12-004
.https://www.mexnext.org/fileadmin/mexnext/user/documents/FinRep_Mexnext_v6_opt.pdf
33.
Carrión
,
M.
,
Woodgate
,
M.
,
Steijl
,
R.
,
Barakos
,
G.
,
Gómez-Iradi
,
S.
, and
Munduate
,
X.
,
2014
, “
CFD and Aeroelastic Analysis of the Mexico Wind Turbine
,”
J. Phys. Conf. Ser.
,
555
, p.
012006
.10.1088/1742-6596/555/1/012006
34.
Bechmann
,
A.
,
Sørensen
,
N. N.
, and
Zahle
,
F.
,
2011
, “
CFD Simulations of the Mexico Rotor
,”
Wind Energy
,
14
(
5
), pp.
677
689
.10.1002/we.450
35.
Sørensen
,
N. N.
,
Zahle
,
F.
,
Boorsma
,
K.
, and
Schepers
,
G.
,
2016
, “
CFD Computations of the Second Round of Mexico Rotor Measurements
,”
J. Phys. Conf. Ser.
,
753
, p.
022054
.10.1088/1742-6596/753/2/022054
36.
Herraez
,
I.
,
Medjroubi
,
W.
,
Stoevesandt
,
B.
, and
Peinke
,
J.
,
2014
, “
Aerodynamic Simulation of the Mexico Rotor
,”
J. Phys. Conf. Ser.
,
555
, p.
012051
.10.1088/1742-6596/555/1/012051
37.
Plaza
,
B.
,
Bardera
,
R.
, and
Visiedo
,
S.
,
2015
, “
Comparison of BEM and CFD Results for Mexico Rotor Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
115
122
.10.1016/j.jweia.2015.05.005
38.
Martinez
,
J.
,
Doerffer
,
P.
,
Szulc
,
O.
, and
Tejero
,
F.
,
2015
, “
Aerodynamic Analysis of Wind Turbine Rotor Blades
,”
Task Q.
,
19
(
2
), pp.
129
140
.https://task.gda.pl/files/quart/TQ2015/02/tq219g-c.pdf
You do not currently have access to this content.