Abstract

Nonuniform manufacturing variations and uneven usage wear and damage, referred to as mistuning, can drastically alter the dynamic response of integrally blade rotors (IBRs). Optical scanners, combined with finite element model (FEM) mesh metamorphosis algorithms, have provided capabilities to create analytical models that reduce the effect of geometrical uncertainties in numerical predictions. However, deviations in material properties cannot be obtained via optical scanning, so additional approaches are needed. A geometric mistuning reduced-order model (ROM) is developed and modified to solve for unknown IBR sector eigenvalues that are linearly proportional to elastic modulus. The developed approach accounts for both proportional and nonproportional mistuning and allows updating of the elastic modulus for each sector in the ROM. Different tuned and mistuned modal reduction procedures are employed to understand the implications of each for identifying mistuning. Simulated test data with known inputs indicate the efficiency and accuracy of the method and improvements over using a traditional, tuned mode approach. The developed methods are then extended to bench-level traveling wave excitation (TWE) data to discern how sector frequencies vary due to geometry and modulus mistuning.

References

1.
Holland
,
D. E.
,
Castanier
,
M. P.
,
Ceccio
,
S. L.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2010
, “
Testing and Calibration Procedures for Mistuning Identification and Traveling Wave Excitation of Blisks
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042502
.10.1115/1.3204656
2.
Beck
,
J. A.
,
Justice
,
J. A.
,
Scott-Emuakpor
,
O. E.
,
George
,
T. J.
, and
Brown
,
J. M.
,
2015
, “
Next Generation Traveling-Wave Excitation System for Integrally Bladed Rotors
,”
J. Aerosp. Eng.
,
28
(
6
), p.
04015005
.10.1061/(ASCE)AS.1943-5525.0000493
3.
Mignolet
,
M. P.
,
Rivas-Guerra
,
A. J.
, and
Delor
,
J. P.
,
2001
, “
Identification of Mistuning Characteristics of Bladed Disks From Free Response Data—Part I
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
395
403
.10.1115/1.1338949
4.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
5.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2008
, “
Reduced-Order Model Construction Procedure for Robust Mistuning Identification of Blisks
,”
AIAA J.
,
46
(
11
), pp.
2890
2898
.10.2514/1.37314
6.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2011
, “
Mistuning Identification of Blisks at Higher Frequencies
,”
AIAA J.
,
49
(
6
), pp.
1299
1302
.10.2514/1.J050427
7.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
8.
Judge
,
J. A.
,
Pierre
,
C.
, and
Ceccio
,
S. L.
,
2009
, “
Experimental Mistuning Identification in Bladed Disks Using a Component-Mode-Based Reduced-Order Model
,”
AIAA J.
,
47
(
5
), pp.
1277
1287
.10.2514/1.41214
9.
Yumer
,
M. E.
,
Cigeroglu
,
E.
, and
Özgüven
,
H. N.
,
2013
, “
Mistuning Identification of Integrally Bladed Disks With Cascaded Optimization and Neural Networks
,”
ASME J. Turbomach.
,
135
(
3
), p.
031008
.10.1115/1.4006667
10.
Pichot
,
F.
,
Laxalde
,
D.
,
Sinou
,
J.-J.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2006
, “
Mistuning Identification for Industrial Blisks Based on the Best Achievable Eigenvector
,”
Comput. Struct.
,
84
(
29–30
), pp.
2033
2049
.10.1016/j.compstruc.2006.08.022
11.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2014
, “
Geometric Mistuning Identification of Integrally Bladed Rotors Using Modified Modal Domain Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122504
.10.1115/1.4027762
12.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
13.
Waldherr
,
C.
,
Buchwald
,
P.
, and
Vogt
,
D. M.
,
2020
, “
A New Mistuning Identification Method Based on the Subset of Nominal System Modes Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p. 021016.10.1115/1.4045517
14.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2015
, “
Geometric Mistuning Reduced-Order Models for Integrally Bladed Rotors With Mistuned Disk-Blade Boundaries
,”
ASME J. Turbomach.
,
137
(
7
), p.
071001
.10.1115/1.4029122
15.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
16.
Bampton
,
M. C. C.
, and
Craig
,
R. R.
, Jr.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
17.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2014
, “
Component-Mode Reduced-Order Models for Geometric Mistuning of Integrally Bladed Rotors
,”
AIAA J.
,
52
(
7
), pp.
1345
1356
.10.2514/1.J052420
18.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Slater
,
J. C.
,
2019
, “
Mistuning Evaluation Comparison Via as-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061006
.10.1115/1.4042079
19.
Beck
,
J. A.
,
Brown
,
J. M.
,
Slater
,
J. C.
, and
Cross
,
C. J.
,
2013
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p.
051004
.10.1115/1.4023103
20.
Benfield
,
W. A.
, and
Hruda
,
R. F.
,
1971
, “
Vibration Analysis of Structures by Component Mode Substitution
,”
AIAA J.
,
9
(
7
), pp.
1255
1261
.10.2514/3.49936
21.
Tran
,
D.-M.
,
2001
, “
Component Mode Synthesis Methods Using Interface Modes. Application to Structures With Cyclic Symmetry
,”
Comput. Struct.
,
79
(
2
), pp.
209
222
.10.1016/S0045-7949(00)00121-8
22.
Castanier
,
M. P.
,
Tan
,
Y.-C.
, and
Pierre
,
C.
,
2001
, “
Characteristic Constraint Modes for Component Mode Synthesis
,”
AIAA J.
,
39
(
6
), pp.
1182
1187
.10.2514/2.1433
23.
Krattiger
,
D.
,
Wu
,
L.
,
Zacharczuk
,
M.
,
Buck
,
M.
,
Kuether
,
R. J.
,
Allen
,
M. S.
,
Tiso
,
P.
, and
Brake
,
M. R. W.
,
2019
, “
Interface Reduction for Hurty/Craig-Bampton Substructured Models: Review and Improvements
,”
Mech. Syst. Signal Process.
,
114
, pp.
579
603
.10.1016/j.ymssp.2018.05.031
24.
Beck
,
J. A.
,
Kaszynski
,
A.
,
Scott-Emuakpor
,
O. E.
, and
Brown
,
J.
,
2015
, “
Validation of Geometric Mistuning Reduced-Order Models for Single and Dual Flow-Path Integrally Bladed Rotors
,”
AIAA
Paper No. 2015-1373. 10.2514/6.2015-1373
25.
Gillaugh
,
D.
,
Kaszynski
,
A.
,
Brown
,
J.
,
Beck
,
J.
, and
Slater
,
J.
,
2020
, “
Strain Gage Ramifications on Mistuning in as-Manufactured Models and Experimental Testing
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051005
.10.1115/1.4045357
You do not currently have access to this content.