Abstract

Recognizing the attention currently devoted to the environmental impact of aviation, this three-part publication series introduces two new aircraft propulsion concepts for the timeframe beyond 2030. The first part focuses on the novel steam injecting and recovering aero engine concept. In the second part, the free-piston composite cycle engine (FP-CCE) concept is presented. Complementary to the two technical publications, this third part describes the cooperative project, which was initiated by an interdisciplinary consortium, aiming at the demonstration and the proof-of-concept of both aforementioned aero engine concepts. At the beginning of the project, simulations on propulsion, aircraft system, and test bench level will be conducted. On this basis, preliminary tests and fundamental experiments are planned in order to establish a solid basis for the demonstration. Finally, a system demonstration will be carried out at the laboratory level. Thus, the project allows for a final judgment on both the feasibility of the new concepts and the attainability of the requirements for future aircraft propulsion systems.

References

1.
Advisory Council for Aviation Research and Innovation in Europe (ACARE)
,
2017
, “
Strategic Research & Innovation Agenda (SRIA) – Volume 1
,” ACARE, Derby, UK, accessed Nov. 7, 2020, https://www.acare4europe.org/sites/acare4europe.org/files/attachment/acare-strategic-research-innovation-volume-1-v2.7-interactive-fin_0.pdf
2.
Air Transport Action Group (ATAG)
,
2011
, “
The Right Flightpath to Reduce Aviation Emissions
,”
UNFCCC Climate Talks
, Durban, South Africa, Nov. 28–Dec. 11.https://seors.unfccc.int/applications/seors/attachments/get_attachment?code=AD75PKPBLWIRYBI18OTM7MF6SZ584E4E#:~:text=From%202020%2C%20aviation%20will%20cap,its%20fair%20share%20of%20emissions
3.
Bundesverband der Deutschen Luftverkehrswirtschaft e.V. (BDL)
,
2018
, “Climate Protection Report 2018,” BDL, Berlin, Germany, accessed Nov. 7, 2020, https://www.bdl.aero/wp-content/uploads/2019/07/Climate-protection-report-2018.pdf
4.
Lee
,
D. S.
,
Pitari
,
G.
,
Grewe
,
V.
,
Gierens
,
K.
,
Penner
,
J. E.
,
Petzold
,
A.
,
Prather
,
M. J.
,
Schumann
,
U.
,
Bais
,
A.
, and
Berntsen
,
T.
,
2010
, “
Transport Impacts on Atmosphere and Climate: Aviation
,”
Atmos. Environ.
,
44
(
37
), pp.
4678
4734
.10.1016/j.atmosenv.2009.06.005
5.
Grewe
,
V.
,
Dahlmann
,
K.
,
Flink
,
J.
,
Frömming
,
C.
,
Ghosh
,
R.
,
Gierens
,
K.
,
Heller
,
R.
,
Hendricks
,
J.
,
Jöckel
,
P.
,
Kaufmann
,
S.
,
Kölker
,
K.
,
Linke
,
F.
,
Luchkova
,
T.
,
Lührs
,
B.
,
Van Manen
,
J.
,
Matthes
,
S.
,
Minikin
,
A.
,
Niklaß
,
M.
,
Plohr
,
M.
,
Righi
,
M.
,
Rosanka
,
S.
,
Schmitt
,
A.
,
Schumann
,
U.
,
Terekhov
,
I.
,
Unterstrasser
,
S.
,
Vázquez-Navarro
,
M.
,
Voigt
,
C.
,
Wicke
,
K.
,
Yamashita
,
H.
,
Zahn
,
A.
, and
Ziereis
,
H.
,
2017
, “
Mitigating the Climate Impact From Aviation: Achievements and Results of the DLR WeCare Project
,”
Aerospace
,
4
(
3
), p.
34
.10.3390/aerospace4030034
6.
European Commission (EC)
,
2011
, “Flightpath 2050, Europe’s Vision for Aviation,”
Report of the High Level Group on Aviation Research
.https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
7.
Schmitz
,
O.
,
Klingels
,
H.
, and
Kufner
,
P.
,
2020
, “
Aero Engine Concepts Beyond 2030: Part 1—The Steam Injecting and Recovering Aero Engine
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4048985
8.
Kaiser
,
S.
,
Schmitz
,
O.
, and
Klingels
,
H.
,
2020
, “
Aero Engine Concepts Beyond 2030: Part 2—The Free-Piston Composite Cycle Engine
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4048993
9.
SAE International
,
2013
, “
Aircraft Propulsion System Performance Station Designation and Nomenclature
,” SAE International, Warrendale, PA, Report No.
SAE-ARP755C
.10.4271/ARP755C
10.
International Air Transport Association (IATA)
,
2013
, “
Technology Roadmap 2013 – 4th Edition
,” International Air Transport Association, Montreal, QC, Canada.https://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/technology-roadmap-2013.pdf
11.
U.S. Department of Energy
,
2011
, “
Technology Readiness Assessment Guide
,” U.S. Department of Energy, Washington, DC, Report No. Guide DOE G 413.3-4A.
12.
Klingels
,
H.
,
2018
, “
Reduction of Contrails During Operation of Aircraft
,” German Patent No. DE 10 2018 203 159 A1, International Patent No. WO 2019/166040 A1.
13.
Klingels
,
H.
, and
Schmitz
,
O.
,
2019
, “
Exhaust-Gas Treatment Device, Aircraft Propulsion System, and Method for Treating an Exhaust-Gas Stream
,” International Patent No. WO 2019/223823 A1.
14.
Klingels
,
H.
,
2013
, “
Wärmekraftmaschine mit Freikolbenverdichter
,” German Patent No. DE 10 2012 206 123 A1.
15.
Kaiser
,
S.
,
Donnerhack
,
S.
,
Lundbladh
,
A.
, and
Seitz
,
A.
,
2016
, “
Composite Cycle Engine Concept With Hecto-Pressure Ratio
,”
AIAA J. Propul. Power
,
32
(
6
), pp.
1413
1421
.10.2514/1.B35976
16.
Kaiser
,
S.
,
Nickl
,
M.
,
Salpingidou
,
C.
,
Vlahostergios
,
Z.
,
Donnerhack
,
S.
, and
Klingels
,
H.
,
2018
, “
Investigations of the Synergy of Composite Cycle and Intercooled Recuperation
,”
Aeronaut. J.
,
122
(
1252
), pp.
869
888
.10.1017/aer.2018.46
17.
Kaiser
,
S.
,
Kellermann
,
H.
,
Nickl
,
M.
, and
Seitz
,
A.
,
2018
, “
A Composite Cycle Engine Concept for Year 2050
,” 31st International Congress of the Aeronautical Sciences (ICAS), Belo Horizonte, Brazil, Sept. 9–14, Paper No.
0638
.https://www.researchgate.net/publication/327601208_A_Composite_Cycle_Engine_Concept_for_Year_2050#:~:text=The%20Composite%20Cycle%20Engine%20concept,of%20turbofan%20and%20piston%20engine.&text=A%20baseline%20concept%20was%20shown,burn%20even%20more%20by%2012.5%20%25
18.
Nickl
,
M.
, and
Kaiser
,
S.
,
2020
, “
Evaluation of Piston Engine Modes and Configurations in Composite Cycle Engine Architectures
,”
CEAS Aeronaut. J.
,
11
(
2
), pp.
391
400
.10.1007/s13272-019-00399-w
19.
Kaiser
,
S.
,
2016
, “
Aircraft Propulsion System Simulation
,” Bauhaus Luftfahrt eV, Taufkirchen, Germany, Internal Technical Report No. IB-16001.
20.
Wang
,
D.
,
Bao
,
A.
,
Kunc
,
W.
, and
Liss
,
W.
,
2012
, “
Coal Power Plant Flue Gas Waste Heat and Water Recovery
,”
Appl. Energy
,
91
(
1
), pp.
341
348
.10.1016/j.apenergy.2011.10.003
21.
Choi
,
J.
,
Satpathy
,
S.
,
Hoard
,
J.
,
Styles
,
D.
, and
Kuan
,
C.-K.
,
2017
, “
An Experimental and Computational Analysis of Water Condensation Separator Within a Charge Air Cooler
,”
ASME
Paper No. ICEF2017-3609.10.1115/ICEF2017-3609
22.
Cash
,
R. Y.
,
Lumsdaine
,
E.
,
Talekar
,
A.
, and
AbdulNour
,
B.
,
2016
, “
An Experimental and Computational Investigation of Water Condensation Inside the Tubes of an Automotive Compact Charge Air Cooler
,”
SAE
Paper No. 2016-01-0224.10.4271/2016-01-0224
23.
Leipertz
,
A.
,
2013
, “
J3 Tropfenkondensation
,”
VDI Wärmeatlas
, pp.
1041
1046
.10.1007/978-3-642-19981-3_65
24.
Kolev
,
N. I.
,
2015
,
Moisture Separation
,
Springer International Publishing
,
Cham, Switzerland
, pp.
363
450
.
25.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2013
, “
Particle and Droplet Deposition in Turbulent Swirled Pipe Flow
,”
Int. J. Multiphase Flow
,
56
, pp.
172
183
.10.1016/j.ijmultiphaseflow.2013.06.002
26.
Li
,
J.
,
Huang
,
S.
, and
Wang
,
X.
,
2007
, “
Numerical Study of Steam-Water Separators With Wave-Type Vanes
,”
Chin. J. Chem. Eng.
,
15
(
4
), pp.
492
498
.10.1016/S1004-9541(07)60114-1
27.
Ho
,
J. Y.
,
Wang
,
X. W.
, and
Leong
,
K. C.
,
2018
, “
Filmwise Condensation of Steam on Vertical Plates With Novel Pin Fin Arrays Produced by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
126
, pp.
652
666
.10.1016/j.ijheatmasstransfer.2018.05.063
28.
Chen
,
A.
,
Maloney
,
D.
, and
Day
,
W.
,
2004
, “
Humid Air NOx Reduction Effect on Liquid Fuel Combustion
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
69
74
.10.1115/1.1615255
29.
Krueger
,
O.
,
Terhaar
,
S.
,
Paschereit
,
C.
, and
Duwig
,
C.
,
2013
, “
Large Eddy Simulations of Hydrogen Oxidation at Ultra-Wet Conditions in a Model Gas Turbine Combustor Applying Detailed Chemistry
,”
ASME
Paper No. GT2012-69446.10.1115/GT2012-69446
30.
Wünning, J.
G.
, 2003
, “
FLOX® – Flameless Combustion
,” Thermprocess Symposium, Düsseldorf, Germany.
31.
Bower
,
H. E.
,
Schwärzle
,
A.
,
Grimm
,
F.
,
Zornek
,
T.
, and
Kutne
,
P.
,
2019
, “
Experimental Analysis of a Micro Gas Turbine Combustor Optimized for Flexible Operation With Various Gaseous Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
, 142(3), p. 031015. 10.1115/1.4044901
32.
Fiolitakis
,
A.
, et al
2018
, “
Assessment of a Finite-Rate-Chemistry Model for Ansys® CFX® Using Experimental Data of a Downsized Gas Turbine Combustor
,”
ASME
Paper No. GT2018-75638.10.1115/GT2018-75638
33.
Henke
,
M.
,
Klempp
,
N.
,
Hohloch
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Validation of a T100 Micro Gas Tur-Bine Steady-State Simulation Tool
,”
ASME
Paper No. GT2015-42090. 10.1115/GT2015-42090
34.
Krummrein
,
T.
,
Henke
,
M.
, and
Kutne
,
P.
,
2018
, “
A Highly Flexible Approach on the Steady-State Analysis of Innovative Micro Gas Turbine Cycles
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121018
.10.1115/1.4040855
You do not currently have access to this content.