Abstract

One of the main challenges currently hindering the transition to energy systems based on renewable power generation is grid stability. To compensate for the volatility of wind- and solar-based power generation, storage facilities able to adapt to seasonal and short-term differences in energy production and demand are required. Liquid organic hydrogen carriers (LOHCs) represent a viable method of chemically binding elemental hydrogen, offering opportunities for large-scale and safe energy storage. In times of energy shortage, flexible and dispatchable power generation technologies such as gas turbines can be fueled by hydrogen stored in this manner. Hydrogen can be released from its liquid carrier via an endothermic dehydrogenation reaction using waste heat provided by the gas turbine. This gaseous hydrogen can be supplied to the gas turbine combustion chamber using a hydrogen compressor. In this study, a steady-state model is developed in order to analyze the heat-integrated combination of a 7.7 MW hydrogen-fired gas turbine and a perhydrodibenzyltoluene (H18-DBT)/dibenzyltoluene (H0-DBT) LOHC system. For the best-performing parameter set, the effective storage density of the LOHC oil comes to 1.5 kWh/L. This value is situated in between that of compressed hydrogen at 350 bar (1.01 kWh/L) and liquid hydrogen (2.33 kWh/L). Concurrently, the corresponding energy required for hydrogen compression reduces the overall system efficiency to 22.00% (ηGT=30.15%). The resulting optimal electricity yield, being a product of these two values, amounts to 0.33 kWhel/L.

References

1.
Publication Office of the European Union
,
2012
, “
Energy Roadmap 2050
,” Publications Office of the European Union, Luxemburg.https://ec.europa.eu/energy/sites/ener/files/documents/2012_energy_roadmap_2050_en_0.pdf
2.
Geburtig
,
D.
,
Preuster
,
P.
,
Bösmann
,
A.
,
Müller
,
K.
, and
Wasserscheid
,
P.
,
2016
, “
Chemical Utilization of Hydrogen From Fluctuating Energy Sources—Catalytic Transfer Hydrogenation From Charged Liquid Organic Hydrogen Carrier Systems
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1010
1017
.10.1016/j.ijhydene.2015.10.013
3.
Glotzbach
,
U.
,
2018
,
Coupling the Different Energy Sectors Options for the Next Phase of the Energy Transition
,
Acatech National Academy of Science and Engineering
(lead institution), Munich, Germany.
4.
Tekin
,
N.
,
Ashikaga
,
M.
,
Horikawa
,
A.
, and
Funke
,
H.
,
2018
, “
Enhancement of Fuel Flexibility of Industrial Gas Turbines by Development of Innovative Hydrogen Combustion Systems
,”
Gas Energy
, 2, pp.
1
6
.https://www.researchgate.net/publication/332290711_Enhancement_of_fuel_flexibility_of_industrial_gas_turbines_by_development_of_innovative_hydrogen_combustion_systems
5.
Preuster
,
P.
,
Alekseev
,
A.
, and
Wasserscheid
,
P.
,
2017
, “
Hydrogen Storage Technologies for Future Energy Systems
,”
Annu. Rev. Chem. Biomol. Eng.
,
8
(
1
), pp.
445
471
.10.1146/annurev-chembioeng-060816-101334
6.
Stolten
,
D.
, and
Emonts
,
B.
,
2016
,
Hydrogen Science and Engineering
,
Wiley-VCH Verlag
,
Weinheim, Germany
.
7.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2014
, “
Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031502
.10.1115/1.4025636
8.
ETN Global
,
2020
, “
Hydrogen Gas Turbines
,”
ETN Global
,
Brussels, Belgium
.
9.
Crabtree
,
R. H.
,
2008
, “
Hydrogen Storage in Liquid Organic Heterocycles
,”
Energy Environ. Sci.
,
1
(
1
), p.
134
.10.1039/b805644g
10.
Preuster
,
P.
,
Papp
,
C.
, and
Wasserscheid
,
P.
,
2017
, “
Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-Free Hydrogen Economy
,”
Acc. Chem. Res.
,
50
(
1
), pp.
74
85
.10.1021/acs.accounts.6b00474
11.
Preuster
,
P.
,
Fang
,
Q.
,
Peters
,
R.
,
Deja
,
R.
,
Nguyen
,
V. N.
,
Blum
,
L.
,
Stolten
,
D.
, and
Wasserscheid
,
P.
,
2018
, “
Solid Oxide Fuel Cell Operating on Liquid Organic Hydrogen Carrier-Based Hydrogen—Making Full Use of Heat Integration Potentials
,”
Int. J. Hydrogen Energy
,
43
(
3
), pp.
1758
1768
.10.1016/j.ijhydene.2017.11.054
12.
Eberle
,
U.
,
Felderhoff
,
M.
, and
Schüth
,
F.
,
2009
, “
Chemical and Physical Solutions for Hydrogen Storage
,”
Angew. Chem. Int. Ed.
,
48
(
36
), pp.
6608
6630
.10.1002/anie.200806293
13.
Hampel
,
B.
,
Bauer
,
S.
,
Heublein
,
N.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2015
, “
Feasibility Study on Dehydrogenation of LOHC Using Excess Exhaust Heat From a Hydrogen-Fueled Micro Gas Turbine
,”
ASME
Paper No. GT2015-43168.10.1115/GT2015-43168
14.
Müller
,
K.
,
Völkl
,
J.
, and
Arlt
,
W.
,
2013
, “
Thermodynamic Evaluation of Potential Organic Hydrogen Carriers
,”
Energy Technol.
,
1
(
1
), pp.
20
24
.10.1002/ente.201200045
15.
Peters
,
R.
,
Deja
,
R.
,
Fang
,
Q.
,
Nguyen
,
V. N.
,
Preuster
,
P.
,
Blum
,
L.
,
Wasserscheid
,
P.
, and
Stolten
,
D.
,
2019
, “
A Solid Oxide Fuel Cell Operating on Liquid Organic Hydrogen Carrier-Based Hydrogen—A Kinetic Model of the Hydrogen Release Unit and System Performance
,”
Int. J. Hydrogen Energy
,
44
(
26
), pp.
13794
13806
.10.1016/j.ijhydene.2019.03.220
16.
Siemens Gas and Power GmbH & Co. KG, and Engie Solutions and Centrax Ltd
.,
2020
, “
Hyflexpower: The World's First Integrated Power-to-x-to-Power Hydrogen Gas Turbine Demonstrator
,” Siemens Gas and Power GmbH & Co. KG, and Engie Solutions and Centrax Ltd., Munich, Germany.
17.
Müller
,
K.
,
Stark
,
K.
,
Emel'yanenko
,
V. N.
,
Varfolomeev
,
M. A.
,
Zaitsau
,
D. H.
,
Shoifet
,
E.
,
Schick
,
C.
,
Verevkin
,
S. P.
, and
Arlt
,
W.
,
2015
, “
Liquid Organic Hydrogen Carriers: Thermophysical and Thermochemical Studies of Benzyl- and Dibenzyl-Toluene Derivatives
,”
Ind. Eng. Chem. Res.
,
54
(
32
), pp.
7967
7976
.10.1021/acs.iecr.5b01840
18.
Peters
,
T.
, and
Sciprofile
,
A. C.
,
2019
,
Pd-Based Membranes
,
Mdpi
,
Basel, Switzerland
.10.3390/books978-3-03897-703-2
19.
Preuster
,
P.
,
2017
, “
Entwicklung Eines Reaktors Zur Dehydrierung Chemischer Wasserstoffträger Als Bestandteil Eines Dezentralen, Stationären Energiespeichers
,” Ph.D. thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
,
Erlangen, Germany
.
20.
Seydel
,
C. G.
,
2015
, “
Performance Potential Analysis of Heavy-Duty Gas Turbines in Combined Cycle Power Plants
,”
ASME
Paper No. GT2015-42017.10.1115/GT2015-42017
21.
Haglind
,
F.
,
2010
, “
Variable Geometry Gas Turbines for Improving the Part-Load Performance of Marine Combined Cycles—Gas Turbine Performance
,”
Energy
,
35
(
2
), pp.
562
570
.10.1016/j.energy.2009.10.026
22.
Zhang
,
N.
, and
Cai
,
R.
,
2002
, “
Analytical Solutions and Typical Characteristics of Part-Load Performances of Single Shaft Gas Turbine and Its Cogeneration
,”
Energy Convers. Manage.
,
43
(
9–12
), pp.
1323
1337
.10.1016/S0196-8904(02)00018-3
23.
Bexten
,
T.
,
Lipperheide
,
M.
,
Wirsum
,
M.
,
Pei
,
L.
, and
Zheng
,
L.
,
2018
, “
A Comparative Study of Data and Physically Based Gas Turbine Modeling for Long-Term Monitoring Scenarios: Part I—Thermodynamic Performance Prediction Without Design Information
,”
ASME
Paper No. GT2018-76630.10.1115/GT2018-76630
24.
Siemens
,
A. G.
,
2009
, “
SGT-300 Industrial Gas Turbine
,” SIEMENS AG, Erlangen, Germany, Report No.
E50001-W430-A106-X-4A00
.https://studylib.net/doc/10459541/sgt-300-industrial-gas-turbine
25.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
26.
KSB SE
, “
Kreiselpumpen lexikon
,”
KSB SE & Co.
,
Frankenthal, Germany
.
27.
Vetter
,
G.
,
1998
,
Leckfreie Pumpen, Verdichter Und Vakuumpumpen
,
Vulkan Verlag GmbH
,
Essen, Germany
.
28.
Gardiner
,
M.
,
2009
, “
Energy Requirements for Hydrogen Gas Compression and Liquefaction as Related to Vehicle Storage Needs
,”
DOE Hydrogen and Fuel Cells Program Record
. https://www.hydrogen.energy.gov/pdfs/9013_energy_requirements_for_hydrogen_gas_compression.pdf
29.
Engelbracht
,
M. F. A.
,
2016
, “
Design eines hocheffizienten festoxid-brennstoffzellensystems mit integrierter schutzgaserzeugung
,” Ph.D. thesis,
Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung Elektrochemische Verfahrenstechnik (IEK-3)
,
Jülich, Germany
.
30.
Baehr
,
H. D.
, and
Stephan
,
K.
,
2019
,
Wärme- Und Stoffübertragung
,
Springer
,
Berlin
.
31.
Ausfelder
,
F.
,
Beilmann
,
C.
,
Bertau
,
M.
,
Bräuninger
,
S.
,
Heinzel
,
A.
,
Hoer
,
R.
,
Koch
,
W.
,
Mahlendorf
,
F.
,
Metzelthin
,
A.
,
Peuckert
,
M.
,
Plass
,
L.
,
Räuchle
,
K.
,
Reuter
,
M.
,
Schaub
,
G.
,
Schiebahn
,
S.
,
Schwab
,
E.
,
Schüth
,
F.
,
Stolten
,
D.
,
Teßmer
,
G.
,
Wagemann
,
K.
, and
Ziegahn
,
K.-F.
,
2017
, “
Energy Storage as Part of a Secure Energy Supply
,”
ChemBioEng Rev.
,
4
(
3
), pp.
144
210
.10.1002/cben.201700004
32.
Hydrogenious LOHC Technologies GmbH, “
Hydrogen Infrastructure Solutions
,”
Hydrogenious LOHC Technologies GmbH
,
Erlangen, Germany
.
33.
Niermann
,
M.
,
Drünert
,
S.
,
Kaltschmitt
,
M.
, and
Bonhoff
,
K.
,
2019
, “
Liquid Organic Hydrogen Carriers (LOHCs)—Techno-Economic Analysis of LOHCs in a Defined Process Chain
,”
Energy Environ. Sci.
,
12
(
1
), pp.
290
307
.10.1039/C8EE02700E
34.
Holladay
,
J.
,
Hu
,
J.
,
King
,
D.
, and
Wang
,
Y.
,
2009
, “
An Overview of Hydrogen Production Technologies
,”
Catal. Today
,
139
(
4
), pp.
244
260
.10.1016/j.cattod.2008.08.039
35.
Chen
,
T.
,
Jin
,
Y.
,
Lv
,
H.
,
Yang
,
A.
,
Liu
,
M.
,
Chen
,
B.
,
Xie
,
Y.
, and
Chen
,
Q.
,
2020
, “
Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems
,”
Trans. Tianjin Univ.
,
26
(
3
), pp.
208
217
.10.1007/s12209-020-00236-w
36.
Simon
,
A.
, ed.,
2016
, “
Cryo-Compressed Pathway Analysis
,” Annual Merit Review Proceedings, Washington, DC, June 6–10, Project No.
PD134
.https://www.hydrogen.energy.gov/pdfs/review16/pd134_simon_2016_o.pdf
37.
Peschka
,
W.
,
1992
,
Liquid Hydrogen-Fuel of the Future
,
Springer
,
Vienna, Austria
.
38.
Witkowski
,
A.
,
Rusin
,
A.
,
Majkut
,
M.
, and
Stolecka
,
K.
,
2017
, “
Comprehensive Analysis of Hydrogen Compression and Pipeline Transportation From Thermodynamics and Safety Aspects
,”
Energy
,
141
, pp.
2508
2518
.10.1016/j.energy.2017.05.141
You do not currently have access to this content.