Abstract

In order to increase the exploitation of the renewable energy sources, the diffusion of the distributed generation systems is grown, leading to an increase in the complexity of the electrical, thermal, cooling, and fuel energy distribution networks. With the main purpose of improving the overall energy conversion efficiency and reducing the greenhouse gas emissions associated with fossil fuel based production systems, the design and the management of these complex energy grids play a key role. In this context, an in-house developed software, called COMBO, presented and validated in Part I of this study, has been applied to a case study in order to define the optimal scheduling of each generation system connected to a complex energy network. The software is based on a nonheuristic technique, which considers all the possible combination of solutions, elaborating the optimal scheduling for each energy system by minimizing an objective function based on the evaluation of the total energy production cost and energy systems' environmental impact. In particular, the software COMBO is applied to a case study represented by an existing small-scale complex energy network, with the main objective of optimizing the energy production mix and the complex energy networks yearly operation depending on the energy demand of the users. The electrical, thermal, and cooling needs of the users are satisfied with a centralized energy production, by means of internal combustion engines, natural gas boilers, heat pumps, compression, and absorption chillers. The optimal energy systems' operation evaluated by the software COMBO will be compared to a reference case, representative of the current energy systems setup, in order to highlight the environmental and economic benefits achievable with the proposed strategy.

References

1.
European Union,
2009
, “
Directive 2009/28/EC of the European Parliament and of the Council
of 23 April on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC (
Text with EEA relevance
),”
J. Eur. Union
, 5, pp.
16
62
.https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF
2.
Hao
,
X.
,
An
,
H.
,
Qi
,
H.
, and
Gao
,
X.
,
2016
, “
Evolution of the Exergy Flow Network Embodied in the Global Fossil Energy Trade: Based on Complex Network
,”
Appl. Energy
,
162
, pp.
1515
1522
.10.1016/j.apenergy.2015.04.032
3.
Considine
,
T.
,
Principal
,
T. C.
, and
Cox
,
W. T.
,
2009
, “
Smart Loads and Smart Grids-Creating the Smart Grid Business Case
,”
Presented at GridInterop
, Vol.
1
, Denver, CO, Nov.10.13140/2.1.1092.3200
4.
Core Writing Team, Pachauri, R. K., and Meyer
, L. A., 2014, “Fifth Assessment Report, AR5, of the Intergovernmental Panel on Climate Change,” IPCC, Geneva, Switzerland, accessed Feb. 15, 2021, http://www.ipcc.ch/report/ar5/index.shtml
5.
Lindseth
,
G.
,
2004
, “
The Cities for Climate Protection Campaign (CCPC) and the Framing of Local Climate Policy
,”
Local Environ
,
9
(
4
), pp.
325
–3
36
.10.1080/1354983042000246252
6.
Fichera
,
A.
,
Frasca
,
M.
, and
Volpe
,
R.
,
2017
, “
Complex Networks for the Integration of Distributed Energy Systems in Urban Areas
,”
Appl. Energy
,
193
, pp.
336
345
.10.1016/j.apenergy.2017.02.065
7.
Ancona
,
M. A.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Di Pietra
,
B.
,
Melino
,
F.
,
Puglisi
,
G.
, and
Zanghirella
,
F.
,
2019
, “
Complex Energy Networks Optimization for Renewables Exploitation and Efficiency Increase
,”
AIP Conf. Proc.
,
2191
, p.
020007
.10.1063/1.5138740
8.
Pesaran
,
M. H. A.
,
Huy
,
P. D.
, and
Ramachandaramurthy
,
V. K.
,
2017
, “
A Review of the Optimal Allocation of Distributed Generation: Objectives, Constraints, Methods, and Algorithms
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
293
312
.10.1016/j.rser.2016.10.071
9.
Luo
,
P.
,
Wang
,
X.
,
Jin
,
H.
,
Li
,
Y.
, and
Yang
,
X.
,
2018
, “
Load Management for Multiple Datacenters Towards Demand Response in the Smart Grid Integrating Renewable Energy
,”
Proceedings of the Second International Conference on Computer Science and Artificial Intelligence
, Shenzhen University, Shenzhen, China, pp.
140
144
.10.1145/3297156.3297197
10.
Marah
,
R.
, and
El Hibaoui
,
A.
,
2018
, “
Algorithms for Smart Grid Management
,”
Sustainable Cities Society
,
38
, pp.
627
635
.10.1016/j.scs.2018.01.041
11.
Reeves
,
C. R.
,
1997
, “
Genetic Algorithms for the Operations Researcher
,”
Informs J. Comput.
,
9
(
3
), pp.
231
250
.10.1287/ijoc.9.3.231
12.
Michaelewicz
,
Z.
,
1992
,
Genetic Algorithms + Data Structure = Evolution Programs
,
Springer
, Berlin.
13.
Awad
,
H.
,
Salim
,
K. M. E.
, and
Gül
,
M.
,
2020
, “
Multi-Objective Design of Grid-Tied Solar Photovoltaics for Commercial Flat Rooftops Using Particle Swarm Optimization Algorithm
,”
J. Build. Eng.
,
28
, pp.
101080
101093
.10.1016/j.jobe.2019.101080
14.
Chaurasia
,
G. S.
,
Singh
,
A. K.
,
Agrawal
,
S.
, and
Sharma
,
N. K.
,
2017
, “
A Meta-Heuristic Firefly Algorithm Based Smart Control Strategy and Analysis of a Grid Connected Hybrid Photovoltaic/Wind Distributed Generation System
,”
Sol. Energy
,
150
, pp.
265
274
.10.1016/j.solener.2017.03.079
15.
Ul Haque
,
A.
,
Mandal
,
P.
,
Meng
,
J.
, and
Pineda
,
R. L.
,
2012
, “
Performance Evaluation of Different Optimization Algorithms for Power Demand Forecasting Applications in a Smart Grid Environment
,”
Procedia Comput. Sci.
,
12
, pp.
320
325
.10.1016/j.procs.2012.09.078
16.
Wakui
,
T.
,
Kinoshita
,
T.
, and
Yokoyama
,
R.
,
2014
, “
A Mixed-Integer Linear Programming Approach for Cogeneration Based Residential Energy Supply Networks With Power and Heat Interchanges
,”
Energy
,
68
, pp.
29
46
.10.1016/j.energy.2014.01.110
17.
Fazlollahi
,
S.
,
Becker
,
G.
,
Ashouri
,
A.
, and
Maréchal
,
F.
,
2015
, “
Multi-Objective, Multi-Period Optimization of District Energy Systems: IV—A Case Study
,”
Energy
,
84
, pp.
365
381
.10.1016/j.energy.2015.03.003
18.
Elsido
,
C.
,
Bischi
,
A.
,
Silva
,
P.
, and
Martelli
,
E.
,
2017
, “
Two-Stage MINLP Algorithm for the Optimal Synthesis and Design of Networks of CHP Units
,”
Energy
,
121
, pp.
403
426
.10.1016/j.energy.2017.01.014
19.
Belotti
,
P.
,
Kirches
,
C.
,
Leyffer
,
S.
,
Linderoth
,
J.
,
Luedtke
,
J.
, and
Mahajan
,
A.
,
2013
, “
Mixed-Integer Nonlinear Optimization
,”
Cambridge Univ. Press
,
22
, pp.
1
131
.10.1017/S0962492913000032
20.
Ancona
,
M. A.
,
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Peretto
,
A.
, and
Rosati
,
J.
,
2020
, “
Complex Energy Networks Optimization: Part I—Development and Validation of a Software for Optimal Load Allocation
,”
ASME
Paper No. GT2020-14187.10.1115/GT2020-14187
You do not currently have access to this content.