Abstract

Considering the growing interest in Power-to-Fuel, i.e., production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Especially in a decentralized production with small-scale cogeneration, micro-Gas Turbines (mGTs) offer great advantages related to their high adaptability and flexibility, in terms of operation and fuel. Hydrogen (or hydrogen enriched methane) combustion is well-known to lead to flame and combustion instabilities. The high temperatures and reaction rates reached in the combustor can potentially lead to flashback. In the past, combustion air humidification (i.e., water addition) has proven effective to reduce temperatures and reaction rates, leading to significant NOx emission reductions. Therefore, combustion air humidification can open a path to stabilize hydrogen combustion in a classical mGT combustor. However accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. In this framework, this paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without combustion air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations (LES) analysis. In a first step, the necessary minimal water dilution, to reach stable and low emissions combustion with hydrogen, was assessed using a one-dimensional (1D) approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched methane/air combustion cases. The results of this comparison show that, for the hydrogen enriched combustion, the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, the feasibility and flexibility of humidified hydrogen enriched methane/air combustion in an industrial mGT combustor have been demonstrated by performing high fidelity LES on a 3D geometry. Results show that steam dilution helped to lower the reactivity of hydrogen, and thus prevents flashback, enabling the use of hydrogen blends in the mGT at similar CO levels, compared to the reference case. These results will help to design future combustor toward more stability.

References

1.
International Energy Agency
,
2018
, World Energy Outlook, International Energy Agency (IEA), Paris, France.
2.
United Nations (UNFCCC)
,
2015
, Paris Agreement, United Nations, New York.
3.
Giorgetti
,
S.
,
Bricteux
,
L.
,
Parente
,
A.
,
Blondeau
,
J.
,
Contino
,
F.
, and
De Paepe
,
W.
,
2017
, “
Carbon Capture on Micro Gas Turbine Cycles: Assessment of the Performance on Dry and Wet Operations
,”
Appl. Energy
,
207
, pp.
243
253
.10.1016/j.apenergy.2017.06.090
4.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F.
,
Mokheimer
,
E.
,
Habib
,
M.
, and
Ghoniem
,
A.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.10.1016/j.apenergy.2015.04.044
5.
Parigi
,
D.
,
Giglio
,
E.
,
Soto
,
A.
, and
Santarelli
,
M.
,
2019
, “
Power-to-Fuels Through Carbon Dioxide Re-Utilization and High-Temperature Electrolysis: A Technical and Economical Comparison Between Synthetic Methanol and Methane
,”
J. Cleaner Prod.
,
226
, pp.
679
691
.10.1016/j.jclepro.2019.04.087
6.
Pilavachi
,
P.
,
2002
, “
Mini- and Micro-Gas Turbines for Combined Heat and Power
,”
Appl. Therm. Eng.
,
22
(
18
), pp.
2003
2014
.10.1016/S1359-4311(02)00132-1
7.
,
2013
, “
Hydrogen From Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications
,”
Int. J. Hydrogen Energy
,
38
(
5
), pp.
2039
2061
.10.1016/j.ijhydene.2012.12.010
8.
De Robbio
,
R.
,
2017
, “
Innovative Combustion Analysis of a Micro-Gas Turbine Burner Supplied With Hydrogen-Natural Gas Mixtures
,”
Energy Procedia
,
126
, pp.
858
866
.10.1016/j.egypro.2017.08.291
9.
Reale
,
F.
,
Calabria
,
R.
,
Chiariello
,
F.
,
Pagliara
,
R.
, and
Massoli
,
P.
,
2012
, “
A Micro Gas Turbine Fuelled by Methane-Hydrogen Blends
,” In Mechanical and Aerospace Engineering,
ICMAE2012
, Vol.
232
of Applied Mechanics and Materials, Paris, France, July 7–8,
Trans Tech Publications Ltd
., pp.
792
796
.10.4028/www.scientific.net/AMM.232.792
10.
di Gaeta
,
A.
,
Reale
,
F.
,
Chiariello
,
F.
, and
Massoli
,
P.
,
2017
, “
A Dynamic Model of a 100 kw Micro Gas Turbine Fuelled With Natural Gas and Hydrogen Blends and Its Application in a Hybrid Energy Grid
,”
Energy
,
129
, pp.
299
320
.10.1016/j.energy.2017.03.173
11.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vazquez
,
M.
, and
Houzeaux
,
G.
,
2018
, “
Numerical Investigation of a Lean Premixed Swirl-Stabilized Hydrogen Combustor and Operational Conditions Close to Flashback
,”
ASME
Paper No. GT2018-76229.10.1115/GT2018-76229
12.
Cappelletti
,
A.
, and
Martelli
,
F.
,
2017
, “
Investigation of a Pure Hydrogen Fueled Gas Turbine Burner
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10513
10523
.10.1016/j.ijhydene.2017.02.104
13.
Tomczak
,
H.-J.
,
Benelli
,
G.
,
Carrai
,
L.
, and
Cecchini
,
D.
,
2002
, “
Investigation of a Gas Turbine Combustion System Fired With Mixtures of Natural Gas and Hydrogen
,”
IFRF Combust. J.
, 19, p.
200207
.https://ifrf.net/research/archive/investigation-of-a-gas-turbine-combustion-system-fired-with-mixtures-of-natural-gas-and-hydrogen/
14.
Cappelletti
,
A.
,
Martelli
,
F.
,
Bianchi
,
E.
, and
Trifoni
,
E.
,
2014
, “
Numerical Redesign of 100 kW mGT Combustor for 100% H2 Fueling
,”
Energy Procedia
,
45
, pp.
1412
1421
.10.1016/j.egypro.2014.01.148
15.
Turbec
, 2010–2011, “
T100 Microturbine CHP System: Technical Description Version 4.0
,” Turbec.
16.
Devriese
,
C.
,
Pennings
,
W.
,
de Reuver
,
H.
,
Bastiaans
,
R.
, and
De Paepe
,
W.
,
2019
, “
The Preliminary CFD Design of a Compressor and Combustor System Towards a 100 kw Hydrogen Fuelled Micro Gas Turbine
,”
ASME
Paper No. GT2019-91342.10.1115/GT2019-91342
17.
Tuccillo
,
R.
,
Cameretti
,
M. C.
,
De Robbio
,
R.
,
Reale
,
F.
, and
Chiariello
,
F.
,
2019
, “
Methane-Hydrogen Blends in Micro Gas Turbines: Comparison of Different Combustor Concepts
,”
ASME
Paper No. GT2019-90229.10.1115/GT2019-90229
18.
Moell
,
D.
,
Lorstad
,
D.
, and
Bai
,
X.-S.
,
2018
, “
LES of Hydrogen Enriched Methane/Air Combustion in the SGT-800 Burner at Real Engine Conditions
,”
ASME
Paper No. GT2018-76434.10.1115/GT2018-76434
19.
Dryer
,
F.
,
1977
, “
Water Addition to Practical Combustion Systems: Concepts and Applications
,”
Symp.Comb
,.,
16
(
1
), pp.
279
295
.10.1016/S0082-0784(77)80332-9
20.
Li
,
M.
,
Tong
,
Y.
,
Thern
,
M.
, and
Klingmann
,
J.
,
2017
, “
Influence of the Steam Addition on Premixed Methane Air Combustion at Atmospheric Pressure
,”
Energies
,
10
(
7
), p.
1070
.10.3390/en10071070
21.
Lellek
,
S.
, and
Sattelmayer
,
T.
,
2015
, “
Influence of Water Injection on Heat Release Distribution, Lean Blowout and Emissions of a Premixed Swirl Flame in a Tubular Combustor
,”
ASME
Paper No. GT2015-42602.10.1115/GT2015-42602
22.
Mazas
,
A. N.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512.10.1115/GT2010-22512
23.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Thermodynamic Analysis of Water Injection in a Micro Gas Turbine: Sankey and Grassmann Diagrams
,”
Energy Procedia
,
105
, pp.
1414
1419
.10.1016/j.egypro.2017.03.527
24.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2018
, “
Toward Higher Micro Gas Turbine Efficiency and Flexibility - Humidified Micro Gas Turbines: A Review
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081702
.10.1115/1.4038365
25.
Tanneberger
,
T.
,
Schimek
,
S.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2019
, “
Combustion Efficiency Measurements and Burner Characterization in a Hydrogen-Oxyfuel Combustor
,”
Int. J. Hydrogen Energy
,
44
(
56
), pp.
29752
29764
.10.1016/j.ijhydene.2019.05.055
26.
Park
,
J.
,
Keel
,
S. I.
, and
Yun
,
J. H.
,
2007
, “
Addition Effects of H2 and H2O on Flame Structure and Pollutant Emissions in Methane–Air Diffusion Flame
,”
Energy Fuels
,
21
(
6
)11, pp.
3216
3224
.10.1021/ef700211m
27.
Goke
,
S.
,
Furi
,
M.
,
Bourque
,
G.
,
Bobusch
,
B.
,
Gockeler
,
K.
,
Kruger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on the Combustion of Natural Gas and Hydrogen in Premixed and Rich-Quench-Lean Combustors
,”
Fuel Process. Technol.
,
107
, pp.
14
22
.10.1016/j.fuproc.2012.06.019
28.
Lhuillier
,
C.
,
Oddos
,
R.
,
Zander
,
L.
,
Luckoff
,
F.
,
Gockeler
,
K.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2017
, “
Hydrogen-Enriched Methane Combustion Diluted With Exhaust Gas and Steam: Fundamental Investigation on Laminar Flames and NOx Emissions
,”
ASME
Paper No. GT2017-64885.10.1115/GT2017-64885
29.
Ditaranto
,
M.
,
Li
,
H.
, and
Løvås
,
T.
,
2015
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Combustion and Emissions Performance
,”
Int. J. Greenhouse Gas Control
,
37
, pp.
377
383
.10.1016/j.ijggc.2015.04.004
30.
Pappa
,
A.
,
Cordier
,
M.
,
Bénard
,
P.
,
Bricteux
,
L.
, and
De Paepe
,
W.
,
2019
, “
How Far Can we Go? Stability Assessment of Micro Gas Turbine Combustion Under Diluted Condition Using LES
,”
9th European Combustion Meeting (ECM)
, Lisboa, Portugal, Apr.
14
17
.
31.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.10.1016/j.combustflame.2013.03.004
32.
Balakrishnan
,
P.
, and
Srinivasan
,
K.
,
2018
, “
Influence of Swirl Number on Jet Noise Reduction Using Flat Vane Swirlers
,”
Aerosp. Sci. Technol.
,
73
, pp.
256
268
.10.1016/j.ast.2017.11.039
33.
Calabria
,
R.
,
Chiariello
,
F.
,
Massoli
,
P.
, and
Reale
,
F.
,
2015
, “
CFD Analysis of Turbec T100 Combustor at Part Load by Varying Fuels
,”
ASME
Paper No. GT2015-43455.10.1115/GT2015-43455
34.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2012
, “
Steam Injection Experiments in a Microturbine - a Thermodynamic Performance Analysis
,”
Appl. Energy
,
97
, pp.
569
576
.10.1016/j.apenergy.2012.01.051
35.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Giorgetti
,
S.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2016
, “
Exhaust Gas Recirculation on Humidified Flexible Micro Gas Turbines for Carbon Capture Applications
,”
ASME
Paper No. GT2016-57265.10.1115/GT2016-57265
36.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
,
Contino
,
F.
, and
De Ruyck
,
J.
,
2013
, “
A Study on the Performance of Steam Injection in a Typical Micro Gas Turbine
,”
ASME
Paper No. GT2013-94569.10.1115/GT2013-94569
37.
De Santis
,
A.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2016
, “
CFD Analysis of Exhaust Gas Recirculation in a Micro Gas Turbine Combustor for CO2 Capture
,”
Fuel
,
173
, pp.
146
154
.10.1016/j.fuel.2016.01.063
38.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Performance Analysis of the Micro Gas Turbine Turbec T100 With a New Flox-Combustion System for Low Calorific Fuels
,”
Appl. Energy
,
159
, pp.
276
284
.10.1016/j.apenergy.2015.08.075
39.
Schwarzle
,
A.
,
Monz
,
T. O.
, and
Aigner
,
M.
,
2016
, “
Detailed Examination of Two-Staged Micro Gas Turbine Combustor
,”
ASME
Paper No. GT2016-57730. 10.1115/GT2017-64477
40.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
Design of a Massively Parallel CFD Code for Complex Geometries
,”
C. R. Mec.
,
339
(
2–3
), pp.
141
148
.10.1016/j.crme.2010.12.001
41.
Kraushaar
,
M.
,
2011
, “
Application of the Compressible and Low-Mach Number Approaches to Large-Eddy Simulation of Turbulent Flows in Aero-Engines
,”
Ph.D. thesis
,
CERFACS
,
Toulouse, France
.https://www.researchgate.net/publication/278639309_Application_of_the_compressible_and_low-mach_number_approaches_to_large-eddy_simulation_of_turbulent_flows_in_aero-engines
42.
Benard
,
P.
,
Moureau
,
V.
,
Lartigue
,
G.
, and
D'Angelo
,
Y.
,
2017
, “
Large-Eddy Simulation of a Hydrogen Enriched Methane/Air Meso-Scale Combustor
,”
Int. J. Hydrogen Energy
,
42
(
4
), pp.
2397
2410
.10.1016/j.ijhydene.2016.11.206
43.
Boulet
,
L.
,
Bénard
,
P.
,
Lartigue
,
G.
,
Moureau
,
V.
,
Didorally
,
S.
,
Chauvet
,
N.
, and
Duchaine
,
F.
,
2018
, “
Modeling of Conjugate Heat Transfer in a Kerosene/Air Spray Flame Used for Aeronautical Fire Resistance Tests
,”
Flow, Turbul. Combust.
,
101
(
2
), pp.
579
602
.10.1007/s10494-018-9965-8
44.
Bénard
,
P.
,
Lartigue
,
G.
,
Moureau
,
V.
, and
Mercier
,
R.
,
2019
, “
Large-Eddy Simulation of the Lean-Premixed Preccinsta Burner With Wall Heat Loss
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5233
5243
.10.1016/j.proci.2018.07.026
45.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
46.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 3 ed.,
Cambridge University Press
,
Cambridge, UK
.
47.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Experimental Characterisation of a Micro Humid Air Turbine: Assessment of the Thermodynamic Performance
,”
Appl. Therm. Eng.
,
118
, pp.
796
806
.10.1016/j.applthermaleng.2017.03.017
48.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
49.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for Les of Premixed Turbulent Combustion Part ii: Dynamic Formulation
,”
Combust. Flame
,
131
(
1–2
), pp.
181
197
.10.1016/S0010-2180(02)00401-7
50.
Poinsot
,
T.
, and
Veynante
,
D.
,
2001
,
Theoretical and Numerical Combustion
, 3 ed.,
Cambridge University Press
,
Cambridge, UK
.
51.
Goodwin
,
D.
,
2005
,
Cantera: Object-Oriented Software for Reacting Flows
,
California Institute for Technology (Caltech)
,
Pasadena, CA
.
52.
Smith
,
G.
,
Golden
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
,
Eitneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C.
,
Hanson
,
R.
,
Song
,
S.
, and
Gardiner
,
W.
, Jr
, and.,
1999
, “
GRI3.0 Mechanism
,” Gas Research Institute, Chicago, IL, Report.
53.
Kazakov
,
A.
, and
Frenklach
,
M.
, “
DRM19 Mechanism
,” GRI-Mech.
54.
Schefer
,
R.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.10.1016/S0360-3199(02)00199-4
You do not currently have access to this content.