Abstract

Across the open literature, there is no clear consensus on what the most suitable modeling fidelity is for rotating cavity flows. Although it is a widely held opinion that unsteady Reynolds-averaged-Navier–Stokes (URANS) approaches are unsuitable, many authors have succeeded in getting reasonable heat transfer results with them. There is also a lack of research into the validity of hybrid URANS/large eddy simulation (LES) type approaches such as detached eddy simulation (DES). This paper addresses these research challenges with a systematic investigation of a rotating cavity with axial throughflow at Grashof numbers of 3.03×109 and 3.03×1011. The disk near-wall layers remained laminar at both conditions, meaning that a turbulence model should not be active in these regions. The disk heat transfer was observed to affect the near-disk aerodynamics, which in turn affect the disk heat transfer: this feedback loop implies that conjugate heat transfer computations of rotating cavities may be worth investigating. On the shroud, additional eddy viscosity in URANS and DES was found to interfere with the formation of heat transfer enhancing streaks, whilst these were always captured by LES. DES exhibited a concerning behavior at the higher Grashof number. Locally generated eddy viscosity from the shroud was injected into the bulk fluid by the radial inflow. This contaminated the entire cavity with nonphysical modeled turbulence. As the radial inflow is a characteristic feature of rotating cavity flows, these results show that caution is necessary when applying hybrid URANS/LES approaches to this type of flow.

References

1.
Atkins
,
N. R.
,
2013
, “
Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control
,”
ASME
Paper No. GT2013–95768. 10.1115/GT2013-95768
2.
Chew
,
J.
, and
Hills
,
N. J.
,
2007
, “
Computational Fluid Dynamics for Turbomachinery Internal Air Systems
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
365
(
1859
), pp.
2587
2611
.10.1098/rsta.2007.2022
3.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
4.
He
,
L.
,
2011
, “
Efficient Computational Model for Nonaxisymmetric Flow and Heat Transfer in Rotating Cavity
,”
ASME J. Turbomach.
,
133
(
2
), p.
021018
.10.1115/1.4000551
5.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer
,”
ASME J. Turbomach.
,
114
(
1
), pp.
229
236
.10.1115/1.2927990
6.
Long
,
C. A.
, and
Tucker
,
P. G.
,
1994
, “
Shroud Heat Transfer Measurements From a Rotating Cavity With an Axial Throughflow of Air
,”
ASME J. Turbomach.
,
116
(
3
), pp.
525
534
.10.1115/1.2929441
7.
Long
,
C. A.
,
1994
, “
Disk Heat Transfer in a Rotating Cavity With an Axial Throughflow of Cooling Air
,”
Int. J. Heat Fluid Flow
,
15
(
4
), pp.
307
316
.10.1016/0142-727X(94)90016-7
8.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,”
ASME
Paper No. 2000-GT-0280. 10.1115/2000-GT-0280
9.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174. 10.1115/GT2014-27174
10.
Puttock-Brown
,
M. R.
,
Rose
,
M. G.
, and
Long
,
C. A.
,
2017
, “
Experimental and Computational Investigation of Rayleigh-Bénard Flow in the Rotating Cavities of a Core Compressor
,”
ASME
Paper No. GT2017-64884. 10.1115/GT2017-64884
11.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1980
, “
Velocity Measurements Inside a Rotating Cylindrical Cavity With a Radial Outflow of Fluid
,”
J. Fluid Mech.
,
99
(
1
), pp.
111
127
.10.1017/S0022112080000547
12.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.10.1115/1.2835635
13.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Trojak
,
W.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P. G.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
, p.
100554
.10.1016/j.paerosci.2019.100554
14.
Yao
,
M.
, and
He
,
L.
,
2020
, “
Implicit Discontinuous Galerkin Solution on Unstructured Mesh for Turbine Blade Secondary Flow
,”
ASME J. Turbomach.
,
142
(
1
), p.
011004
.10.1115/1.4045551
15.
Long
,
C. A.
, and
Tucker
,
P. G.
,
1994
, “
Numerical Computation of Laminar Flow in a Heated Rotating Cavity With an Axial Throughflow of Air
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(
4
), pp.
347
365
.10.1108/EUM0000000004043
16.
Bohn
,
D.
,
Ren
,
J.
, and
Tuemmers
,
C.
,
2006
, “
Investigation of the Unstable Flow Structure in a Rotating Cavity
,”
ASME
Paper No. GT2006-90494. 10.1115/GT2006-90494
17.
Bohn
,
D.
, and
Ren
,
J.
,
2009
, “
How Far Have We Been?
,”
Front. Energy Power Eng. China
,
3
(
4
), pp.
489
497
.10.1007/s11708-009-0040-y
18.
Bohn
,
D.
,
Krewinkel
,
R.
, and
Wolff
,
A.
,
2013
, “
Numerical Analysis of Heat Transfer and Flow Stability in an Open Rotating Cavity Using the Maximum Entropy Production Principle
,”
ASME J. Turbomach.
,
135
(
4
), p.
041023
.10.1115/1.4007613
19.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2-LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.10.1016/j.paerosci.2011.07.002
20.
Palkin
,
E.
,
Mullyadzhanov
,
R.
,
Hadziabdic
,
M.
, and
Hanjalic
,
K.
,
2016
, “
Scrutinizing URANS in Shedding Flows: The Case of Cylinder in Cross-Flow in the Subcritical Regime
,”
Flow, Turbul. Combust.
,
97
(
4
), pp.
1017
1046
.10.1007/s10494-016-9772-z
21.
Tucker
,
P. G.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerosp. Sci.
,
63
, pp.
1
32
.10.1016/j.paerosci.2013.06.001
22.
Rubini
,
R.
,
Maffulli
,
R.
, and
Arts
,
T.
,
2018
, “
Effect of the Gas to Wall Temperature Ratio on the Bypass Transition
,”
ASME
Paper No. GT2018-76214. 10.1115/GT2018-76214
23.
Owen
,
J. M.
,
Abrahamsson
,
H.
, and
Lindblad
,
K.
,
2007
, “
Buoyancy-Induced Flow in Open Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
893
900
.10.1115/1.2719260
24.
Tan
,
Q.
,
Ren
,
J.
, and
Jiang
,
H.
,
2009
, “
Prediction of Flow Features in Rotating Cavities With Axial Throughflow by RANS and LES
,”
ASME
Paper No. GT2009-59428. 10.1115/GT2009-59428
25.
Tan
,
Q.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Prediction of 3D Unsteady Flow and Heat Transfer in Rotating Cavity by Discontinuous Galerkin Method and Transition Model
,”
ASME
Paper No. GT2014-26584. 10.1115/GT2014-26584
26.
Dweik
,
Z.
,
Briley
,
R.
,
Swafford
,
T.
, and
Hunt
,
B.
,
2009
, “
Computational Study of the Heat Transfer of the Buoyancy-Driven Rotating Cavity With Axial Throughflow of Cooling Air
,”
ASME
Paper No. GT2009-59978. 10.1115/GT2009-59978
27.
Sun
,
Z.
,
Lindblad
,
K.
,
Chew
,
J.
, and
Young
,
C.
,
2007
, “
LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
318
325
.10.1115/1.2364192
28.
Puttock-Brown
,
M. R.
, and
Rose
,
M. G.
,
2018
, “
Formation and Evolution of Rayleigh-Bénard Streaks in Rotating Cavities
,”
ASME
Paper No. GT2018-75497. 10.11115/GT2018-75497
29.
Tateishi
,
A.
,
Watanabe
,
T.
, and
Himeno
,
T.
,
2018
, “
Unsteady Flow Simulation of Buoyancy-Driven Flows in High-Pressure Compressor Disk Cavities
,”
ASME
Paper No. GT2018-76327. 10.1115/GT2018-76327
30.
Kouwa
,
J.
,
Iso
,
Y.
,
Polidoro
,
F.
, and
Gautier
,
S.
,
2018
, “
Very-Large Eddy Simulations of Disk Heat Transfer in a Rotating Cavity Using Lattice-Boltzmann Method
,”
ASME
Paper No. GT2018-76832. 10.1115/GT2018-76832
31.
He
,
L.
, and
Yi
,
J.
,
2017
, “
Two-Scale Methodology for URANS/Large Eddy Simulation Solutions of Unsteady Turbomachinery Flows
,”
ASME J. Turbomach.
,
139
(
10
), p.
101012
.10.1115/1.4036765
32.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
, p. 108468.10.1016/j.ijheatfluidflow.2019.108468
33.
Pitz
,
D. B.
,
Chew
,
J.
, and
Marxen
,
O.
,
2019
, “
Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021020
.10.1115/1.4041113
34.
Sun
,
Z.
,
Amirante
,
D.
,
Chew
,
J.
, and
Hills
,
N. J.
,
2015
, “
Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032505
.10.1115/1.4031387
35.
Onori
,
M.
,
Amirante
,
D.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2016
, “
LES Validation for a Rotating Cylindrical Cavity With Radial Inflow
,”
ASME
Paper No. GT2016-56393. 10.1115/GT2016-56393
36.
Onori
,
M.
,
Amirante
,
D.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2019
, “
Heat Transfer Prediction From Large Eddy Simulation of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121002
.10.1115/1.4045150
37.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
Berlin
.
38.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
39.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
40.
Menter
,
F.
,
2018
, “
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling
,”
Notes Numer. Fluid Mech. Multidiscip. Des.
,
137
, pp.
27
37
.10.1007/978-3-319-70031-1
41.
Tian
,
S.
, and
Zhu
,
Y.
,
2012
, “
Disk Heat Transfer Analysis in a Heated Rotating Cavity With an Axial Throughflow
,”
ASME
Paper No. GT2012-69185. 10.1115/GT2012-69185
42.
Childs
,
P. R. N.
,
2011
,
Rotating Flow: Fundamentals
,
Butterworth-Heinemann
,
Oxford, UK
.
43.
He
,
L.
,
2019
, “
Closely Coupled Fluid-Solid Interface Method With Moving-Average for LES Based Conjugate Heat Transfer Solution
,”
Int. J. Heat Fluid Flow
,
79
, p.
108440
.10.1016/j.ijheatfluidflow.2019.108440
44.
Faghri
,
A.
,
Zhang
,
Y.
, and
Howell
,
J. R.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
,
Ellisville, MO
.
45.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k–ω Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
(
3
), pp.
431
449
.10.1007/s10494-011-9378-4
You do not currently have access to this content.