Abstract

An experimental investigation was performed in a premixed annular combustor equipped with multiple swirl, bluff body burners to assess the ignition probability and to provide insights into the mechanisms of failure and of successful flame propagation. The experiments are done at conditions that are close to the lean blow-off (LBO) limit, and hence, the ignition is difficult and close to the limiting condition when ignition is not possible. Two configurations were employed, with 12 and 18 burners, the mixture velocity was varied between 10 and 30 m/s, and the equivalence ratio (ϕ) between 0.58 and 0.68. Ignition was initiated by a sequence of sparks (2 mm gap, 10 sparks of 10 ms each) and “ignition” is defined as successful ignition of the whole annular combustor. The mechanism of success and failure of the ignition process and the flame propagation patterns were investigated via high-speed imaging (10 kHz) of OH* chemiluminescence. The lean ignition limits were evaluated and compared to the LBO limits, finding the 12-burner configuration is more stable than the 18-burner. It was found that failure is linked to the trapping of the initial flame kernel inside the inner recirculation zone (IRZ) of a single burner adjacent to the spark, followed by localized quenching on the bluff body probably due to heat losses. In contrast, for a successful ignition, it was necessary for the flame kernel to propagate to the adjacent burner or for a flame pocket to be convected downstream in the chamber to grow and start propagating upward. Finally, the ignition probability (Pign) was obtained for different spark locations. It was found that sparking inside the recirculation zone resulted in Pign0 for most conditions, while Pign increased moving the spark away from the bluff body or placing it between two burners and peaked to Pign1 when the spark was located downstream in the combustion chamber, where the velocities are lower and the turbulence less intense. The results provide information on the most favorable conditions for achieving ignition in a complex multiburner geometry and could help the design and optimization of realistic gas turbine combustors.

References

1.
Lefebvre
,
A. W.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion-Alternative Fuels and Emissions
,
CRC Press, Taylor and Francis Group
,
NY
.
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2017
,
Gas Turbine Emissions
,
Cambridge University Press
,
Cambridge, UK
.
3.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
,
Academic Press
, Cambridge, MA.
4.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
5.
Mastorakos
,
E.
,
2017
, “
Forced Ignition of Turbulent Spray Flames
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2367
2383
.10.1016/j.proci.2016.08.044
6.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.10.1016/j.combustflame.2013.02.014
7.
Machover
,
E.
, and
Mastorakos
,
E.
,
2017
, “
Experimental Investigation on Spark Ignition of Annular Premixed Combustors
,”
Combust. Flame
,
178
, pp.
148
157
.10.1016/j.combustflame.2017.01.013
8.
Xia
,
Y.
,
Linghu
,
C.
,
Zheng
,
Y.
,
Ye
,
C.
,
Ma
,
C.
,
Ge
,
H.
, and
Wang
,
G.
,
2019
, “
Experimental Investigation of the Flame Front Propagation Characteristic During Light-Round Ignition in an Annular Combustor
,”
Flow, Turbul. Combust.
,
103
(
1
), pp.
247
269
.10.1007/s10494-019-00018-y
9.
Machover
,
E.
, and
Mastorakos
,
E.
,
2016
, “
Spark Ignition of Annular Non-Premixed Combustors
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
64
70
.10.1016/j.expthermflusci.2015.09.008
10.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3717
3724
.10.1016/j.proci.2016.08.008
11.
Prieur
,
K.
,
Durox
,
D.
,
Vignat
,
G.
,
Schuller
,
T.
, and
Candel
,
S.
,
2018
, “
Flame and Spray Dynamics During the Light-Round Process in an Annular System Equipped With Multiple Swirl Spray Injectors
,”
ASME
Paper No. GT2018-76840.10.1115/GT2018-76840
12.
Birch
,
A.
,
Brown
,
D.
, and
Dodson
,
M.
,
1981
, “
Ignition Probabilities in Turbulent Mixing Flows
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
1775
1780
.10.1016/S0082-0784(81)80182-8
13.
Smith
,
M.
,
Birch
,
A.
,
Brown
,
D.
, and
Fairweather
,
M.
,
1988
, “
Studies of Ignition and Flame Propagation in Turbulent Jets of Natural Gas, Propane and a Gas With a High Hydrogen Content
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1403
1408
.10.1016/S0082-0784(88)80372-2
14.
Ahmed
,
S. F.
,
2014
, “
The Probabilistic Nature of Ignition of Turbulent Highly-Strained Lean Premixed Methane-Air Flames for Low-Emission Engines
,”
Fuel
,
134
, pp.
97
106
.10.1016/j.fuel.2014.05.052
15.
Sitte
,
M. P.
,
Bach
,
E.
,
Kariuki
,
J.
,
Bauer
,
H.-J.
, and
Mastorakos
,
E.
,
2016
, “
Simulations and Experiments on the Ignition Probability in Turbulent Premixed Bluff-Body Flames
,”
Combust. Theory Modell.
,
20
(
3
), pp.
548
565
.10.1080/13647830.2016.1155756
16.
Cordier
,
M.
,
Vandel
,
A.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A. M.
,
2013
, “
Laser-Induced Spark Ignition of Premixed Confined Swirled Flames
,”
Combust. Sci. Technol.
,
185
(
3
), pp.
379
407
.10.1080/00102202.2012.725791
17.
Ahmed
,
S. F.
, and
Mastorakos
,
E.
,
2006
, “
Spark Ignition of Lifted Turbulent Jet Flames
,”
Combust. Flame
,
146
(
1–2
), pp.
215
231
.10.1016/j.combustflame.2006.03.007
18.
Ahmed
,
S. F.
,
Balachandran
,
R.
,
Marchione
,
T.
, and
Mastorakos
,
E.
,
2007
, “
Spark Ignition of Turbulent Nonpremixed Bluff-Body Flames
,”
Combust. Flame
,
151
(
1–2
), pp.
366
385
.10.1016/j.combustflame.2007.06.012
19.
Ahmed
,
S. F.
,
Balachandran
,
R.
, and
Mastorakos
,
E.
,
2007
, “
Measurements of Ignition Probability in Turbulent Non-Premixed Counterflow Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1507
1513
.10.1016/j.proci.2006.07.089
20.
Marchione
,
T.
,
Ahmed
,
S. F.
, and
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Swirling n-Heptane Spray Flames Using Single and Multiple Sparks
,”
Combust. Flame
,
156
(
1
), pp.
166
180
.10.1016/j.combustflame.2008.10.003
21.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
22.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
23.
Allison
,
P. M.
, and
Mastorakos
,
E.
,
2017
, “
Forced Response of Flames in a Bluff-Body Stabilized Annular Combustor
,”
AIAA
Paper No. 2017-1337.10.2514/6.2017-1337
24.
Ciardiello
,
R.
,
Skiba
,
A. W.
,
Gordon
,
R. L.
, and
Mastorakos
,
E.
,
2020
, “
Experimental Assessment of the Lean Blow-Off in a Fully Premixed Annular Combustor
,”
Exp. Therm. Fluid Sci.
,
112
, p.
109994
.10.1016/j.expthermflusci.2019.109994
25.
Mularz
,
E. J.
,
1979
, “
Lean, Premixed, Prevaporized Combustion for Aircraft Gas Turbine Engines
,”
AIAA
Paper No. 1979-1318.10.2514/6.1979-1318
26.
Hayashi
,
S.
,
1995
, “
Compatibility Between Low-NOx Emissions and High–Combustion Efficiency by Lean Direct Injection Combustion
,”
ASME
Paper No. 95-GT-276. 10.1115/95-GT-276
27.
Foust
,
M.
,
Thomsen
,
D.
,
Stickles
,
R.
,
Cooper
,
C.
, and
Dodds
,
W.
,
2013
, “
Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines
,”
AIAA
Paper No. 2012-936.10.2514/6.2012-936
28.
Kariuki
,
J.
,
Dawson
,
J. R.
, and
Mastorakos
,
E.
,
2012
, “
Measurements in Turbulent Premixed Bluff Body Flames Close to Blow-Off
,”
Combust. Flame
,
159
(
8
), pp.
2589
2607
.10.1016/j.combustflame.2012.01.005
29.
Cordier
,
M.
,
Vandel
,
A.
,
Renou
,
B.
,
Cabot
,
G.
,
Boukhalfa
,
A. M.
, and
Cazalens
,
M.
,
2013
, “
Spark Ignition of Confined Swirled Flames: Experimental and Numerical Investigation
,”
ASME
Paper No. GT2013-94384.10.1115/GT2013-94384
30.
Gaydon
,
A. G.
, and
Wolfhard
,
H. G.
,
1979
,
Flames, Their Structure, Radiation, and Temperature
,
Halsted Press
, Ultimo, New South Wales, Australia.
You do not currently have access to this content.