Abstract

This paper seeks to advance linear stability analyses of thermoacoustic systems conducted with the stabilized finite element method (sFEM). Specifically, this work analyzes and quantifies the impact of the streamline-upwind-Petrov–Galerkin (SUPG) artificial diffusion scheme on (eigen)mode shapes and damping rates of the isentropic linearized Euler equations (LEEs) in frequency space. The LEE (eigen)mode shapes are separated into acoustic and vortical perturbation components via a Helmholtz decomposition and their sensitivity on the employed stabilization scheme is investigated separately. The regions where numerical stabilization mainly acts on the perturbation types are identified and explanations for the observations are provided. A methodology is established, which allows the quantification of the impact of artificial diffusion on the acoustic field in terms of a damping rate. This nonphysical damping rate is used to determine the physically meaningful, acoustic LEE damping rate, which is corrected by the contribution of artificial diffusion. Hence, the presented method eliminates a main shortcoming of LEE eigenfrequency analyses with the sFEM and, as a result, provides more accurate information on the stability of thermoacoustic systems.

References

1.
Schuermans
,
B.
,
Bothien
,
M.
,
Maurer
,
M.
, and
Bunkute
,
B.
,
2015
, “
Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/GT24 Reheat Combustors
,”
ASME
Paper No. GT2015-42287.10.1115/GT2015-42287
2.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.10.1115/1.4035592
3.
Berger
,
F.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041507
.10.1115/1.4038036
4.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.10.1115/GT2003-38688
5.
Zahn
,
M.
,
Schulze
,
M.
,
Hirsch
,
C.
,
Betz
,
M.
, and
Sattelmayer
,
T.
,
2015
, “
Frequency Domain Predictions of Acoustic Wave Propagation and Losses in a Swirl Burner With Linearized Navier-Stokes Equations
,”
ASME
Paper No. GT2015-42723.10.1115/GT2015-42723
6.
Searby
,
G.
,
Habiballah
,
M.
,
Nicole
,
A.
, and
Laroche
,
E.
,
2008
, “
Prediction of the Efficiency of Acoustic Damping Cavities
,”
J. Propul. Power
,
24
(
3
), pp.
516
523
.10.2514/1.32325
7.
Howe
,
M. S.
,
1979
, “
Attenuation of Sound in a Low Mach Number Nozzle Flow
,”
J. Fluid Mech.
,
91
(
2
), pp.
209
229
.10.1017/S0022112079000124
8.
Schwing
,
J.
,
Sattelmayer
,
T.
, and
Noiray
,
N.
,
2011
, “
Interaction of Vortex Shedding and Transverse High-Frequency Pressure Oscillations in a Tubular Combustion Chamber
,”
ASME
Paper No. GT2011-45246.10.1115/GT2011-45246
9.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031510
.10.1115/1.4034453
10.
Hofmeister
,
T.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2019
, “
Quantification of Energy Transformation Processes Between Acoustic and Hydrodynamic Modes in Non-Compact Thermoacoustic Systems Via a Helmholtz-Hodge Decomposition Approach
,”
ASME
Paper No. GT2019-90240.10.1115/GT2019-90240
11.
Donéa
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
,
Chichester, UK
.
12.
Brooks
,
A.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
13.
Franca
,
L. P.
, and
Frey
,
S. L.
,
1992
, “
Stabilized Finite Element Methods—II: The Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2–3
), pp.
209
233
.10.1016/0045-7825(92)90041-H
14.
Lieuwen
,
T. C.
,
2013
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
15.
Ewert
,
R.
, and
Schröder
,
W.
,
2003
, “
Acoustic Perturbation Equations Based on Flow Decomposition Via Source Filtering
,”
J. Comput. Phys.
,
188
(
2
), pp.
365
398
.10.1016/S0021-9991(03)00168-2
16.
Bhatia
,
H.
,
Norgard
,
G.
,
Pascucci
,
V.
, and
Bremer
,
P.
,
2013
, “
The Helmholtz-Hodge Decomposition—A Survey
,”
IEEE Trans. Visualization Comput. Graphics
,
19
(
8
), pp.
1386
1404
.10.1109/TVCG.2012.316
17.
Ronneberger
,
D.
,
1987
, “
Theoretische und Experimentelle Untersuchung der Schallausbreitung Durch Querschnittssprünge und Lochplatten in Strömungskanälen
,” Drittes Physikalisches Institut Der Universität Göttingen, Göttingen, Germany, Report No. Ro-369-11-12-14.
18.
Motheau
,
E.
,
Selle
,
L.
, and
Nicoud
,
F.
,
2014
, “
Accounting for Convective Effects in Zero-Mach-Number Thermoacoustic Models
,”
J. Sound Vib.
,
333
(
1
), pp.
246
262
.10.1016/j.jsv.2013.08.046
19.
Myers
,
M.
,
1986
, “
An Exact Energy Corollary for Homentropic Flow
,”
J. Sound Vib.
,
109
(
2
), pp.
277
284
.10.1016/S0022-460X(86)80008-6
20.
Magri
,
L.
,
2019
, “
Adjoint Methods as Design Tools in Thermoacoustics
,”
ASME Appl. Mech. Rev.
,
71
(
2
), p.
020801
.10.1115/1.4042821
21.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.10.1017/S0022112007005654
You do not currently have access to this content.