Abstract

Hybrid energy plants (HEPs), which include both fossil fuel technologies and renewable energy systems, can provide an important step toward a sustainable energy supply. In fact, the hybridization of renewable energy systems with gas turbines (GTs), which are fed by fossil fuels allows an acceptable compromise, so that high fossil fuel efficiency and high share of renewables can be potentially achieved. Moreover, electrical and thermal energy storage systems increase the flexibility of the energy plant and effectively manage the variability of energy production and demand. This paper investigates the optimal sizing of a HEP, which combines an industrial GT, renewable energy systems, and energy storage technologies. The considered renewable energy system is a photovoltaic system (PV), while the energy storage technologies are electrical energy storage and thermal energy storage. Moreover, a compression chiller and a gas boiler (GB) are also considered. For this purpose, the load profiles of electricity, heating, and cooling during a whole year are taken into account for the case study of the Campus of the University of Parma (Italy). The sizing optimization problem of the different technologies composing the HEP is solved by using a genetic algorithm, with the goal of minimizing the primary energy consumption (PEC). Moreover, different operation strategies are analyzed and compared so that plant operation is also optimized. The results demonstrate that the optimal sizing of the HEP, coupled with the optimized operation strategy, allows high average cogeneration efficiency (up to 84%), thus minimizing PEC.

References

1.
Chwieduk
,
D.
,
2003
, “
Towards Sustainable-Energy Buildings
,”
Appl. Energy
,
76
(
1–3
), pp.
211
217
.10.1016/S0306-2619(03)00059-X
2.
Bahlawan
,
H.
,
Morini
,
M.
,
Pinelli
,
M.
,
Poganietz
,
W. R.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2019
, “
Optimization of a Hybrid Energy Plant by Integrating the Cumulative Energy Demand
,”
Appl. Energy
,
253
, p.
113484
.10.1016/j.apenergy.2019.113484
3.
Bahlawan
,
H.
,
Morini
,
M.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2019
, “
Dynamic Programming Based Methodology for the Optimization of the Sizing and Operation of Hybrid Energy Plants
,”
Appl. Therm. Eng.
,
160
, p.
113967
.10.1016/j.applthermaleng.2019.113967
4.
Manwell
,
J. F.
,
2004
, “
Hybrid Energy Systems
,”
Encyclopedia of Energy
,
C. J.
Cleveland
, ed., Vol.
3
, Elsevier,
Amsterdam, The Netherlands
, pp.
215
229
.
5.
Semprini
,
S.
,
Sanchez
,
D.
, and
De Pascale
,
A.
,
2016
, “
Performance Analysis of a Micro Gas Turbine and Solar Dish Integrated System Under Different Solar-Only and Hybrid Operating Conditions
,”
Sol. Energy
,
132
, pp.
279
293
.10.1016/j.solener.2016.03.012
6.
Behar
,
O.
,
2018
, “
A Novel Hybrid Solar Preheating Gas Turbine
,”
Energ. Convers. Manage.
,
158
, pp.
120
132
.10.1016/j.enconman.2017.11.043
7.
Christos
,
K.
,
Nikos
,
A.
,
Ioannis
,
R.
,
Alexios
,
A.
, and
Konstantinos
,
M.
,
2016
, “
Assessment of Solar Gas Turbine Hybridization Schemes
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061701
.10.1115/1.4035289
8.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2012
, “
Optimal Gas-Turbine Design for Hybrid Solar Power Plant Operation
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
092301
.10.1115/1.4006986
9.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2014
, “
A Comparative Thermoeconomic Study of Hybrid Solar Gas-Turbine Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011801
.10.1115/1.4024964
10.
Ellingwood
,
K.
,
Safdarnejad
,
S. M.
,
Kovacs
,
H.
,
Tuttle
,
J. F.
, and
Powell
,
K.
,
2019
, “
Analysing the Benefits of Hybridisation and Storage in a Hybrid Solar Gas Turbine Plant
,”
Int. J. Sustainable Energy
,
38
(
10
), pp.
937
965
.10.1080/14786451.2019.1639705
11.
Cuneo
,
A.
,
Zaccaria
,
V.
,
Tucker
,
D.
, and
Sorce
,
A.
,
2018
, “
Gas Turbine Size Optimization in a Hybrid System Considering SOFC Degradation
,”
App. Energy
,
230
, pp.
855
864
.10.1016/j.apenergy.2018.09.027
12.
Isfahani
,
S. N. R.
, and
Sedaghat
,
A.
,
2016
, “
A Hybrid Micro Gas Turbine and Solid State Fuel Cell Power Plant With Hydrogen Production and CO2 Capture
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9490
9499
.10.1016/j.ijhydene.2016.04.065
13.
Hajabdollahi
,
Z.
, and
Fu
,
P. F.
,
2017
, “
Multi-Objective Based Configuration Optimization of SOFC-GT Cogeneration Plant
,”
Appl. Therm. Eng.
,
112
, pp.
549
559
.10.1016/j.applthermaleng.2016.10.103
14.
Krummrein
,
T.
,
Henke
,
M.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2018
, “
Numerical Analysis of Operating Range and SOFC-Off-Gas Combustor Requirements of a Biogas Powered SOFC-MGT Hybrid Power Plant
,”
Appl. Energy
,
232
, pp.
598
606
.10.1016/j.apenergy.2018.09.166
15.
MosayebNezhad
,
M.
,
Mehr
,
A. S.
,
Gandiglio
,
M.
,
Lanzini
,
A.
, and
Santarelli
,
M.
,
2018
, “
Techno-Economic Assessment of Biogas-Fed CHP Hybrid Systems in a Real Wastewater Treatment Plant
,”
Appl. Therm. Eng.
,
129
, pp.
1263
1280
.10.1016/j.applthermaleng.2017.10.115
16.
Wang
,
J.
,
Wang
,
H.
, and
Fan
,
Y.
,
2018
, “
Techno-Economic Challenges of Fuel Cell Commercialization
,”
Engineering
,
4
(
3
), pp.
352
360
.10.1016/j.eng.2018.05.007
17.
Arsalis
,
A.
,
Alexandrou
,
A. N.
, and
Georghiou
,
G. E.
,
2018
, “
Thermoeconomic Modeling of a Small-Scale Gas Turbine-Photovoltaic-Electrolyzer Combined-Cooling-Heating-and-Power System for Distributed Energy Applications
,”
J. Clean. Prod.
,
188
, pp.
443
455
.10.1016/j.jclepro.2018.04.001
18.
Campo
,
P.
,
Benitez
,
T.
,
Lee
,
U.
, and
Chung
,
J. N.
,
2015
, “
Modeling of a Biomass High Temperature Steam Gasifier Integrated With Assisted Solar Energy and a Micro Gas Turbine
,”
Energy Convers. Manage.
,
93
, pp.
72
83
.10.1016/j.enconman.2014.12.069
19.
Sarkis
,
R. B.
, and
Zare
,
V.
,
2018
, “
Proposal and Analysis of Two Novel Integrated Configurations for Hybrid Solar-Biomass Power Generation Systems: Thermodynamic and Economic Evaluation
,”
Energy Convers. Manage.
,
160
, pp.
411
425
.10.1016/j.enconman.2018.01.061
20.
Zhang
,
X.
,
Zeng
,
R.
,
Du
,
T.
,
He
,
Y.
,
Tian
,
H.
,
Mu
,
K.
,
Liu
,
X.
, and
Li
,
H.
,
2019
, “
Conventional and Energy Level Based Exergoeconomic Analysis of Biomass and Natural Gas Fired Polygeneration System Integrated With Ground Source Heat Pump and PEM Electrolyzer
,”
Energy Convers. Manage.
,
195
, pp.
313
327
.10.1016/j.enconman.2019.05.017
21.
Sadeghi
,
S.
, and
Askari
,
I. B.
,
2019
, “
Prefeasibility Techno-Economic Assessment of a Hybrid Power Plant With Photovoltaic, Fuel Cell and Compressed Air Energy Storage (CAES)
,”
Energy
,
168
, pp.
409
424
.10.1016/j.energy.2018.11.108
22.
GfK Belgium Consortium
,
2017
, “
Residential Prosumers in the European Energy Union
,” GfK Belgium Consortium, Brussels, Belgium.
23.
Cocco
,
D.
,
Palomba
,
C.
, and
Puddu
,
P.
,
2008
,
Tecnologie Delle Energie Rinnovabili
,
SG Editoriali
,
Padova
, Italy.
24.
Kreith
,
F.
, and
Goswami
,
D. Y.
,
2007
,
Handbook of Energy Efficiency and Renewable Energy
,
CRC Press
, Cleveland, OH.
25.
Farmer
,
R.
,
deBiasi
,
B.
, and
Isles
,
J.
,
2007–2008
,
Gas Turbine World Handbook
, Volume 26,
Pequot Publishing Inc.
,
Fairfield, CT
.
26.
Lozza
,
G.
,
2016
,
Turbine a Gas e Cicli Combinati
, 3rd ed.,
Italy
.
27.
Viessmann
,
2020
, “Datasheet Vitomax LW,” Viessmann Ltd, Telford, UK, accessed July 12, 2020, https://webapps.viessmann.com/vibooks/GB/en
28.
Barbieri
,
E. S.
,
Dai
,
Y. J.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Sun
,
P.
, and
Wang
,
R. Z.
,
2014
, “
Optimal Sizing of a Multi-Source Energy Plant for Power Heat and Cooling Generation
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
736
750
.10.1016/j.applthermaleng.2013.11.022
29.
Mitsubishi Electric
,
2019
, “Datasheet Air Cooled Chillers,” Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A., Valsugana, Italy, accessed, July 12, 2020, https://www.melcohit.com/IT/Download/Download/9969.dl
30.
Steen
,
D.
,
Stadler
,
M.
,
Cardoso
,
G.
,
Groissbock
,
M.
,
De Forest
,
N.
, and
Marnay
,
C.
,
2015
, “
Modeling of Thermal Storage Systems in MILP Distributed Energy Source Models
,”
Appl. Energy
,
137
, pp.
782
792
.10.1016/j.apenergy.2014.07.036
31.
Van der Kam
,
M.
, and
Van Sark
,
W.
,
2015
, “
Smart Charging of Electric Vehicles With Photovoltaic Power and Vehicle-to-Grid Technology in a Microgrid; A Case Study
,”
Appl. Energy
,
152
, pp.
20
30
.10.1016/j.apenergy.2015.04.092
32.
Han
,
G.
,
You
,
S.
,
Ye
,
T.
,
Sun
,
P.
, and
Zhang
,
H.
,
2014
, “
Analysis of Combined Cooling, Heating, and Power Systems Under a Compromised Electric–Thermal Load Strategy
,”
Energy Build
,
84
, pp.
586
594
.10.1016/j.enbuild.2014.09.006
33.
J. H.
,
Holland
,
J. H.
,
1975
,
Adaption in Natural and Artificial System
,
University of Michigan Press
,
Ann Arbor
, MI.
34.
Zatti
,
M.
,
Gabba
,
M.
,
Freschini
,
M.
,
Rossi
,
M.
,
Gambarotta
,
A.
,
Morini
,
M.
, and
Martelli
,
E.
,
2019
, “
k-MILP: A Novel Clustering Approach to Select Typical and Extreme Days for Multi-Energy Systems Design Optimization
,”
Energy
,
181
, pp.
1051
1063
.10.1016/j.energy.2019.05.044
35.
Gambarotta
,
A.
,
Morini
,
M.
,
Rossi
,
M.
, and
Stonfer
,
M.
,
2017
, “
A Library for the Simulation of Smart Energy Systems: The Case of the Campus of the University of Parma
,”
Energy Procedia
,
105
, pp.
1776
1781
.10.1016/j.egypro.2017.03.514
36.
Ente Italiano di Normazione
,
2012
, Stima delle prestazioni energetiche degli edifici, Italy, Standard No. UNI TS 11300 (in Italian).
37.
Ente Italiano di Normazione
,
2016
,
Stima delle prestazioni energetiche degli edifici, Italy, Standard No. UNI 10349
(in Italian).
38.
Liu
,
M.
,
Shi
,
Y.
, and
Fang
,
F.
,
2012
, “
A New Operation Strategy for CCHP Systems With Hybrid Chillers
,”
Appl. Energy
,
95
, pp.
164
173
.10.1016/j.apenergy.2012.02.035
39.
Mago
,
P. J.
,
Chamra
,
L. M.
, and
Ramsay
,
J.
,
2010
, “
Micro-Combined Cooling, Heating and Power Systems Hybrid Electric-Thermal Load Following Operation
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
800
806
.10.1016/j.applthermaleng.2009.12.008
You do not currently have access to this content.