Abstract

In this paper, an experimental and numerical investigation of internal cooling channels with rib turbulators is presented with sCO2 as the working fluid at process conditions (pressure-20.7 MPa and temperature up to 150 °C). The effect of channel aspect ratio up to 2:1 on thermal-hydraulic performance is explored in additively manufactured rectangular channels and square channels, both with and without 60 deg ribs on the top and bottom sides. The Wilson-plot method is employed to experimentally measure channel-averaged Nusselt number over a Reynolds number range up to 370,000. The friction factor is calculated from pressure drop and mass flow rate and additionally, the overall thermal performance factor (TPF) is reported. A companion computational fluid dynamics (CFD) simulation is performed for the rib turbulated cooling configurations reported in the experiments using the Reynolds average Navier–Stokes-based turbulence model. The objective of the numerical study is to gain insight into the local heat transfer augmentation in the ribbed channels as a result of varying the aspect ratio, channel configuration (square versus rectangular), operating conditions (Reynolds number) and the surface roughness, an inherent outcome of the additive manufacturing process. Surface roughness is simulated using sand grain roughness height (KS) calculated from the experimental data, and a comparison is presented with the corresponding channel configuration with varying surface roughness heights starting from smooth surfaces (KS = 0). Experimental results indicate that the heat transfer augmentation is negligible in the rectangular channels with ribs on the long side compared to the square channel. However, it is enhanced by 60% in comparison to placing ribs on the shorter side. The TPF remains constant at around 1 for the entire range of Reynolds numbers consistent with prior work at the National Energy Technology Laboratory (NETL). The simulation results highlight that increased surface roughness can have a favorable considerable influence on Nusselt number and overall thermal performance enhancement.

References

1.
White
,
C. W.
,
Shelton
,
W. W.
,
Weiland
,
N. T.
, and
Shultz
,
T. R.
,
2018
, “
sCO2 Cycle as an Efficiency Improvement Opportunity for Air-Fired Coal Combustion
,”
The Sixth International sCO2 Power Cycles Symposium
, Pittsburgh, PA, Mar. 27–29, pp.
1
30
.http://sco2symposium.com/papers2018/cycles/135_Paper.pdf
2.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
,
2013
, “
High Efficiency and Low Cost of Electricity Generation From Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Procedia
,
37
, pp.
1135
1149
.10.1016/j.egypro.2013.05.211
3.
Chen
,
K.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2018
, “
Experimental Study of Jet Impingement Cooling With Carbon Dioxide at Supercritical Pressures on Micro Structured Surfaces
,”
J. Supercrit. Fluids
,
139
, pp.
45
52
.10.1016/j.supflu.2018.05.002
4.
Chen
,
K.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2018
, “
Experimental Investigation of Jet Impingement Cooling With Carbon Dioxide at Supercritical Pressures
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
4
), p.
042204
.10.1115/1.4038421
5.
Adeoye
,
S.
,
Parahovnik
,
A.
, and
Peles
,
Y.
,
2021
, “
A Micro Impinging Jet With Supercritical Carbon Dioxide
,”
Int. J. Heat Mass Transfer
,
170
, p.
121028
.10.1016/j.ijheatmasstransfer.2021.121028
6.
Thimsen
,
D.
,
2015
,
Regen-SCOT: Rocket Engine-Derived High Efficiency Turbomachinery for Electric Power, Generation
, Electric Power Research Institute,
Palo Alto, CA
.
7.
Sasaki
,
T.
,
Itoh
,
M.
,
Maeda
,
H.
,
Tominaga
,
J.
,
Saito
,
D.
, and
Niizeki
,
Y.
,
2017
, “
Development of Turbine and Combustor for a Semi-Closed Recuperated Brayton Cycle of Supercritical Carbon Dioxide
,”
ASME
Paper No. POWER-ICOPE2017-3419.10.1115/POWER-ICOPE2017-3419
8.
Musgrove
,
G.
,
2018
, “
sCO2 Cooling Performance in Turbomachinery Introduction Variation of Thermophysical Fluid Properties
,”
The Sixth International Symposium—Supercritical CO2 Power Cycles
, Pittsburgh, PA, Mar. 27–29, pp.
2
7
.http://sco2symposium.com/papers2018/145_Paper.pdf
9.
Alkandari
,
A.
,
2020
,
Computational Investigation of Supercritical Carbon Dioxide Slot Jet Impingement Heat Transfer
,
The Pennsylvania State University
, State College, PA.
10.
Martin
,
M. J.
,
Yellapantula
,
S.
,
Day
,
M. S.
,
Bell
,
J. B.
, and
Grout
,
R. W.
,
2019
, “
Impingement of a Supercritical Carbon Dioxide Jet on a Planar Surface
,”
AIAA
Paper No. 2019-1559.10.2514/6.2019-1559
11.
Tran
,
L. V.
, and
Kapat
,
J. S.
,
2015
, “
Numerical Study of the Heat Transfer and Friction Performance in Channels With a Supercritical Fluid
,”
AIAA
Paper No. 2015-3879.10.2514/6.2015-3879
12.
Schmitt
,
J.
,
Willis
,
R.
,
Amos
,
D.
,
Kapat
,
J.
, and
Custer
,
C.
,
2014
, “
Study of a Supercritical CO2 Turbine With TIT of 1350K for Brayton Cycle With 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane
,”
ASME
Paper No. GT2014-27214.10.1115/GT2014-27214
13.
Schmitt
,
J.
,
Willis
,
R.
,
Amos
,
D.
,
Kapat
,
J.
, and
Custer
,
C.
,
2014
, “
Study of a Supercritical CO2 Turbine With TIT of 1350 K for Brayton Cycle With 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane
,” The Fourth International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, pp. 1–19.
14.
Khadse
,
A.
,
Curbelo
,
A.
,
Vesely
,
L.
, and
Kapat
,
J. S.
,
2020
, “
A Numerical Study on Conjugate Heat Transfer for Supercritical CO2 Turbine Blade With Cooling Channels
,”
ASME
Paper No. GT2020-14679.10.1115/GT2020-14679
15.
Sullivan
,
N.
,
Ricklick
,
M.
, and
Boetcher
,
S.
,
2020
, “
Supercritical CO2 Heat Transfer in a Staggered Pin-Fin Channel
,”
AIAA
Paper No. 2020-3696.10.2514/6.2020-3696
16.
Searle
,
M.
,
Roy
,
A.
,
Black
,
J.
,
Straub
,
D.
, and
Ramesh
,
S.
,
2022
, “
Investigating Gas Turbine Internal Cooling Using Supercritical CO2 at Higher Reynolds Numbers for Direct Fired Cycle Applications
,”
ASME J. Turbomach.
,
144
(
1
), p.
011007
.10.1115/1.4052138
17.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63025.10.1115/GT2017-63025
18.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
ASME
Paper No. GT2013-94277.10.1115/GT2013-94277
19.
Han
,
J. C.
, and
Chen
,
H. C.
,
2006
, “
Turbine Blade Internal Cooling Passages With Rib Tabulators
,”
J. Propuls. Power
,
22
(
2
), pp.
226
248
.10.2514/1.12793
20.
Wright
,
L. M.
, and
Han
,
J. C.
,
2014
, “
Heat Transfer Enhancement for Turbine Blade Internal Cooling
,”
J. Enhanc. Heat Transfer
,
21
(
2–3
), pp.
111
140
.10.1615/JEnhHeatTransf.2015012169
21.
Han
,
J.-C.
, and
Wright
,
L. M.
,
2007
, “
Enhanced Internal Cooling of Turbine Blades and Vanes
,”
Gas Turbine Handbook
, National Energy Technology Laboratory, Pittsburgh, PA, pp.
321
352
.
22.
Chyu
,
M. K.
, and
Siw
,
S. C.
,
2013
, “
Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021008
.10.1115/1.4023829
23.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
064001
.10.1115/1.4049496
24.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
.10.1115/1.3239782
25.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Tabulators
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
2
), pp.
321
328
.10.1115/1.3250487
26.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1989
, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1619
1630
.10.1016/0017-9310(89)90044-6
27.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.10.1016/0017-9310(92)90309-G
28.
Sundberg
,
J.
,
2006
,
Heat Transfer Correlations for Gas Turbine Cooling
,
Linköpings Universitet
, Department of Mechanical Engineering, Sweden.https://www.divaportal.org/smash/get/diva2:21321/FULLT EXT01.pdf
29.
Kilpatrick
,
E.
, and in Kim, S.,
2018
, “
Roughness Effects on Flow and Heat Transfer in a Ribbed Duct Considering Additive Manufacturing
,”
Proceedings of GPPS Forum
,
18
, Global Power and Propulsion Society, Zurich, Switzerland, Jan. 10–12, pp.
10
12
.https://pure.qub.ac.uk/en/publications/roughness-effects-on-flow-and-heat-transfer-in-a-ribbed-duct-cons
30.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), pp.
51008
51010
.10.1115/1.4032167
31.
Black
,
J.
,
Straub
,
D.
,
Robey
,
E.
,
Yip
,
J.
,
Ramesh
,
S.
,
Roy
,
A.
, and
Searle
,
M.
,
2020
, “
Measurement of Convective Heat Transfer Coefficient With Supercritical CO2 Using the Wilson-Plot Technique
,”
ASME J. Energy Resour. Technol.
, 142(7), p.
070901
.10.1115/1.4046700
32.
Kline
,
S.
, and
McClintock
,
F.
,
1953
,
Describing Uncertainties in Single-Sample Experiments
,
Mechanical Engineering
, 75, pp.
3
8
.
33.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
, 107(2), pp.
173
178
.10.1115/1.3242452
34.
Searle
,
M.
,
Black
,
J.
,
Straub
,
D.
,
Robey
,
E.
,
Yip
,
J.
,
Ramesh
,
S.
,
Roy
,
A.
,
Sabau
,
A. S.
, and
Mollot
,
D.
,
2020
, “
Heat Transfer Coefficients of Additively Manufactured Tubes With Internal Pin Fins for Supercritical Carbon Dioxide Cycle Recuperators ⋆
,”
Appl. Therm. Eng.
,
181
, p.
116030
.10.1016/j.applthermaleng.2020.116030
35.
Hu
,
K. S.
, and
Shih
,
T. I. P.
,
2018
, “
Steady Rans of Flow and Heat Transfer in a Smooth and Pin-Finned U-Duct With a Trapezoidal Cross Section
,”
ASME
Paper No. GT2018-75530.10.1115/GT2018-75530
36.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
, A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
37.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
38.
Rallabandi
,
A. P.
,
Yang
,
H.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With 45 Deg Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), p.
071703
.10.1115/1.3090818
You do not currently have access to this content.