Abstract

The coupling between different components of a turbomachinery is becoming more widely studied especially by use of computational fluid dynamics. Such simulations are of particular interest especially at the interface between a combustion chamber and a turbine, for which the prediction of the migration of hotspots generated in the chamber is of paramount importance for performance and life-duration issues. Despite this need for fully integrated simulations, typical turbomachinery simulations however often only consider isolated components with either time-averaged constant value, radial profile or least frequently two-dimensional maps imposed at their inlet boundaries preventing any accurate two-way coupling. The objective of this study is to investigate available solutions to perform isolated simulations while taking into account the effect of multicomponent coupling. Investigations presented in the paper focus on the full aero-thermal combustor-turbine interaction research (FACTOR) configuration. The first step of the proposed method is to record conservative variables solved by the large-eddy simulation (LES) code at the interface plane between the chamber and the turbine of a reference simulation. Then, using the spectral proper orthogonal decomposition (SPOD) method, the recorded data is analyzed and can be partially reconstructed using different numbers of frequencies. Using the partial reconstructions, it is then possible to replicate a realistic inlet boundary condition for isolated turbine simulations with both velocity and temperature fluctuations, while reducing the storage cost compared to the initial database. The integrated simulation is then compared to the isolated simulations as well as against simulations making use of averaged quantities with or without synthetic turbulence injection at their inlet. The isolated simulations for which the inlet condition is reconstructed with a large number of frequencies show very good agreement with the fully integrated simulation compared to the typical isolated simulation using average quantities at the inlet. As expected, decreasing the number of frequencies in the reconstructed signal deteriorates the accuracy of the resulting signal compared to the full recorded database. However, isolated simulations with a low number of frequencies still perform better than standard boundary conditions, especially from an aero-thermal point of view.

References

1.
Lumley
,
J. L.
,
1970
,
Stochastic Tools in Turbulence
,
Academic Press
, New York.
2.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I—Coherent Structures. II—Symmetries and Transformations. III—Dynamics and Scaling
,”
Q. Appl. Math.
,
45
, pp.
573
582
.10.1090/qam/910463
3.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
4.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-4221710.1115/GT2015-42217.
5.
Krumme
,
A.
,
Tegeler
,
M.
, and
Gattermann
,
S.
,
2019
, “
Design, Integration and Operation of a Rotating Combustor-Turbine-Interaction Test Rig Within the Scope of the EC FP7 Project FACTOR
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics ETC13
, Lausanne, Switzerland, Apr. 8–12, Article No. ETC2019-035.10.29008/ETC2019-035
6.
Koupper
,
C.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
, and
Bonneau
,
G.
,
2016
, “
Experimental and Numerical Calculation of Turbulent Timescales at the Exit of an Engine Representative Combustor Simulator
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), pp.
021503
021503
.10.1115/1.4031262
7.
Andreini
,
A.
,
Facchini
,
B.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2015
, “
Hybrid RANS-LES Modeling of a Hot Streak Generator Oriented to the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2015-4240210.1115/GT2015-42402.
8.
Koupper
,
C.
,
Gicquel
,
L.
,
Duchaine
,
F.
, and
Bonneau
,
G.
,
2015
, “
Advanced Combustor Exit Plane Temperature Diagnostics Based on Large Eddy Simulations
,”
Flow, Turbul. Combust.
,
95
(
1
), pp.
79
96
.10.1007/s10494-015-9607-3
9.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in an Annular Hot Streak Generator for the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2016-5658310.1115/GT2016-56583.
10.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2018
, “
Modelling Strategies for the Prediction of Hot Streak Generation in Lean Burn Aeroengine Combustors
,”
Aerosp. Sci. Technol.
,
79
, pp.
266
277
.10.1016/j.ast.2018.05.030
11.
Cubeda
,
S.
,
Mazzei
,
L.
,
Bacci
,
T.
, and
Andreini
,
A.
,
2018
, “
Impact of Predicted Combustor Outlet Conditions on the Aerothermal Performance of Film-Cooled Hpt Vanes
,”
ASME. J. Eng. Gas Turbines Power
, 141(5), p. 051011.10.1115/1.4041038
12.
Koupper
,
C.
,
Bonneau
,
G.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2016
, “
Large Eddy Simulations of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
ASME
Paper No. GT2016-56443.10.1115/GT2016-56443
13.
Schoenfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
.10.2514/3.14333
14.
Lax
,
P. D.
, and
Wendroff
,
B.
,
1964
, “
Difference Schemes for Hyperbolic Equations With High Order of Accuracy
,”
Commun. Pure Appl. Math.
,
17
(
3
), pp.
381
398
.10.1002/cpa.3160170311
15.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
16.
Bizzari
,
R.
,
Lahbib
,
D.
,
Dauptain
,
A.
,
Duchaine
,
F.
,
Gicquel
,
L.
, and
Nicoud
,
F.
,
2018
, “
A Thickened-Hole Model for Large Eddy Simulations Over Multiperforated Liners
,”
Flow, Turbul. Combust.
,
101
(
3
), pp.
705
717
.10.1007/s10494-018-9909-3
17.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
, pp.
17
46
.10.1017/S0022112006003156
18.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
19.
Granet
,
V.
,
Vermorel
,
O.
,
Léonard
,
T.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2010
, “
Comparison of Nonreflecting Outlet Boundary Conditions for Compressible Solvers on Unstructured Grids
,”
AIAA J.
,
48
(
10
), pp.
2348
2364
.10.2514/1.J050391
20.
Schmid
,
P.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp. 5–28.10.1017/S0022112010001217
21.
Schmidt
,
O. T.
, and
Towne
,
A.
,
2019
, “
An Efficient Streaming Algorithm for Spectral Proper Orthogonal Decomposition
,”
Comput. Phys. Commun.
,
237
, pp.
98
109
.10.1016/j.cpc.2018.11.009
22.
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2020
, “
Guide to Spectral Proper Orthogonal Decomposition
,”
AIAA J.
,
58
(
3
), pp.
1023
1033
.10.2514/1.J058809
23.
Chu
,
B.-T.
,
1965
, “
On the Energy Transfer to Small Disturbances in Fluid Flow (Part I)
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.10.1007/BF01387235
24.
Guezennec
,
N.
, and
Poinsot
,
T.
,
2009
, “
Acoustically Nonreflecting and Reflecting Boundary Conditions for Vortcity Injection in Compressible Solvers
,”
AIAA J.
,
47
(
7
), pp.
1709
1722
.10.2514/1.41749
25.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
359
371
.10.1115/1.1369598
26.
Kraichnan
,
R. H.
,
1970
, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
,
13
(
1
), pp.
22
31
.10.1063/1.1692799
27.
Duchaine
,
F.
,
Dombard
,
J.
,
Gicquel
,
L.
, and
Koupper
,
C.
,
2017
, “
On the Importance of Inlet Boundary Conditions for Aerothermal Predictions of Turbine Stages With Large Eddy Simulation
,”
Comput. Fluids
,
154
, pp.
60
73
.10.1016/j.compfluid.2017.05.024
You do not currently have access to this content.