Abstract

This paper provides a comprehensive evaluation of crucial performances of hydrodynamic journal bearings subject to inherent uncertainties from a nonprobabilistic perspective. Uncertainties can arise for various reasons such as the evolving service environment, manufacturing errors, and assembling imperfections. An efficient nonintrusive frame named the Chebyshev interval finite difference method is proposed to solve the interval Reynolds equations, which allows accurate predictions of variabilities of performance parameters. The uncertain geometrical properties, lubricant viscosity, and external load are considered and their effects on the static and dynamic characteristics of the uncertain journal bearing are intensively discussed in different situations. New insightful results are found in various case studies and numerical validations of the proposed method are carried out. Moreover, the sensitivity analysis was carried out and the application of the proposed frame to a Jeffcott rotor was demonstrated. The interval uncertainties are found to have severe effects on the hydrodynamic journal bearings, causing potential critical influences in the corresponding rotating systems. Results and methods in this study provide references to robust assessment and design of journal bearings, and further guide the investigations on rotor-journal bearing systems.

References

1.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2020
, “
Dynamic Force Coefficients Identification on Air-Lubricated Herringbone Grooved Journal Bearing
,”
Mech. Syst. Signal Process.
,
136
, p.
106498
.10.1016/j.ymssp.2019.106498
2.
Nicoletti
,
R.
, and
Santos
,
I. F.
,
2003
, “
Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings
,”
J. Sound Vib.
,
260
(
5
), pp.
927
947
.10.1016/S0022-460X(02)00951-3
3.
Chien
,
S.-Y.
,
Cramer
,
M. S.
,
Fu
,
G.
, and
Untaroiu
,
A.
,
2018
, “
Performance of Adaptive Lubricants in a Hybrid Journal Bearing Operating Under Fully Saturated Conditions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062504
.10.1115/1.4038551
4.
Zhao
,
Z.
,
Feng
,
K.
,
Zhao
,
X.
, and
Liu
,
W.
,
2018
, “
Identification of Dynamic Characteristics of Hybrid Bump-Metal Mesh Foil Bearings
,”
ASME J. Tribol.
,
140
(
5
), p.
051702
.10.1115/1.4039721
5.
Maharshi
,
K.
,
Mukhopadhyay
,
T.
,
Roy
,
B.
,
Roy
,
L.
, and
Dey
,
S.
,
2018
, “
Stochastic Dynamic Behaviour of Hydrodynamic Journal Bearings Including the Effect of Surface Roughness
,”
Int. J. Mech. Sci.
,
142–143
, pp.
370
383
.10.1016/j.ijmecsci.2018.04.012
6.
Xie
,
Z.
, and
Zhu
,
W.
,
2021
, “
Theoretical and Experimental Exploration on the Micro Asperity Contact Load Ratios and Lubrication Regimes Transition for Water-Lubricated Stern Tube Bearing
,”
Tribol. Int.
,
164
, p.
107105
.10.1016/j.triboint.2021.107105
7.
Zuo
,
Y.
, and
Wang
,
J.
,
2017
, “
A Method for Dynamic Analysis of Three-Dimensional Solid Element Rotors With Uncertain Parameters
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
054501
.10.1115/1.4035049
8.
Murthy
,
R.
,
Tomei
,
J. C.
,
Wang
,
X. Q.
,
Mignolet
,
M. P.
, and
El-Shafei
,
A.
,
2014
, “
Nonparametric Stochastic Modeling of Structural Uncertainty in Rotordynamics: Unbalance and Balancing Aspects
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062506
.10.1115/1.4026166
9.
Lund
,
J. W.
,
1974
, “
Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings
,”
J. Eng. Ind.
,
96
(
2
), pp.
509
517
.10.1115/1.3438358
10.
Ozguven
,
H. N.
, and
Ozkan
,
Z. L.
,
1984
, “
Whirl Speeds and Unbalance Response of Multibearing Rotors Using Finite Elements
,”
J. Vib., Acoust., Stress, Reliab. Des.
,
106
, pp.
72
79
.10.1115/1.3269158
11.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
J. Eng. Ind.
,
98
(
2
), pp.
593
600
.10.1115/1.3438942
12.
Ma
,
H.
,
Wang
,
X.
,
Niu
,
H.
, and
Wen
,
B.
,
2015
, “
Oil-Film Instability Simulation in an Overhung Rotor System With Flexible Coupling Misalignment
,”
Arch. Appl. Mech.
,
85
(
7
), pp.
893
907
.10.1007/s00419-015-0998-3
13.
Ma
,
J.
,
Zhang
,
H.
,
Lou
,
S.
,
Chu
,
F.
,
Shi
,
Z.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2021
, “
Analytical and Experimental Investigation of Vibration Characteristics Induced by Tribofilm-Asperity Interactions in Hydrodynamic Journal Bearings
,”
Mech. Syst. Signal Process.
,
150
, p.
107227
.10.1016/j.ymssp.2020.107227
14.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2006
, “
A New Derivation for Journal Bearing Stiffness and Damping Coefficients in Polar Coordinates
,”
J. Sound Vib.
,
290
(
1–2
), pp.
500
507
.10.1016/j.jsv.2005.04.019
15.
Zhao
,
S. X.
,
Dai
,
X. D.
,
Meng
,
G.
, and
Zhu
,
J.
,
2005
, “
An Experimental Study of Nonlinear Oil-Film Forces of a Journal Bearing
,”
J. Sound Vib.
,
287
(
4–5
), pp.
827
843
.10.1016/j.jsv.2004.11.034
16.
Gertzos
,
K.
,
Nikolakopoulos
,
P.
, and
Papadopoulos
,
C.
,
2008
, “
Cfd Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant
,”
Tribol. Int.
,
41
(
12
), pp.
1190
1204
.10.1016/j.triboint.2008.03.002
17.
Hili
,
M. A.
,
Bouaziz
,
S.
,
Maatar
,
M.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2010
, “
Hydrodynamic and Elastohydrodynamic Studies of a Cylindrical Journal Bearing
,”
J. Hydrodyn.
,
22
(
2
), pp.
155
163
.10.1016/S1001-6058(09)60041-X
18.
Das
,
S.
,
Guha
,
S.
, and
Chattopadhyay
,
A.
,
2002
, “
On the Steady-State Performance of Misaligned Hydrodynamic Journal Bearings Lubricated With Micropolar Fluids
,”
Tribol. Int.
,
35
(
4
), pp.
201
210
.10.1016/S0301-679X(01)00065-2
19.
Zhou
,
W.
,
Wei
,
X.
,
Wang
,
L.
, and
Wu
,
G.
,
2017
, “
A Superlinear Iteration Method for Calculation of Finite Length Journal Bearing's Static Equilibrium Position
,”
R. Soc. Open Sci.
,
4
(
5
), p.
161059
.10.1098/rsos.161059
20.
Ma
,
J.
,
Zhang
,
H.
,
Shi
,
Z.
,
Chu
,
F.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2021
, “
Modelling Acoustic Emissions Induced by Dynamic Fluid-Asperity Shearing in Hydrodynamic Lubrication Regime
,”
Tribol. Int.
,
153
, p.
106590
.10.1016/j.triboint.2020.106590
21.
Alves
,
D. S.
,
Daniel
,
G. B.
,
Castro
,
H. F. d.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.10.1016/j.mechmachtheory.2020.103835
22.
Datz
,
J.
,
Karimi
,
M.
, and
Marburg
,
S.
,
2021
, “
Effect of Uncertainty in the Balancing Weights on the Vibration Response of a High-Speed Rotor
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061002
.10.1115/1.4049628
23.
Koondilogpiboon
,
N.
, and
Inoue
,
T.
,
2021
, “
Nonlinear Vibration Analysis of a Flexible Rotor Supported by a Flexure Pivot Tilting Pad Journal Bearing in Comparison to a Fixed Profile Journal Bearing With Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091007
.10.1115/1.4050367
24.
da Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2019
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), p.
011703
.10.1115/1.4041021
25.
Fu
,
C.
,
Zhu
,
W.
,
Yang
,
Y.
,
Zhao
,
S.
, and
Lu
,
K.
,
2022
, “
Surrogate Modeling for Dynamic Analysis of an Uncertain Notched Rotor System and Roles of Chebyshev Parameters
,”
J. Sound Vib.
,
524
, p.
116755
.10.1016/j.jsv.2022.116755
26.
Li
,
Z.
,
Jiang
,
J.
, and
Tian
,
Z.
,
2017
, “
Stochastic Dynamics of a Nonlinear Misaligned Rotor System Subject to Random Fluid-Induced Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011004
.10.1115/1.4034124
27.
Mourelatos
,
Z. P.
,
2005
, “
Design of Crankshaft Main Bearings Under Uncertainty
,”
ANSA&mETA
International Congress, Athos Kassndra, Halkidiki, Greece, June 2–3, pp.
1
12
.
28.
Ruiz
,
R. O.
, and
Diaz
,
S. E.
, “
Effect of Uncertainties in the Estimation of Dynamic Coefficients on Tilting Pad Journal Bearings
,”
ASME
Paper No. V04BT05A030.10.1115/IMECE2016-67252
29.
Sun
,
X.
,
Sepahvand
,
K. K.
, and
Marburg
,
S.
,
2021
, “
Stability Analysis of Rotor-Bearing Systems Under the Influence of Misalignment and Parameter Uncertainty
,”
Appl. Sci.
,
11
(
17
), p.
7918
.10.3390/app11177918
30.
Fu
,
C.
,
Xu
,
Y.
,
Yang
,
Y.
,
Lu
,
K.
,
Gu
,
F.
, and
Ball
,
A.
,
2020
, “
Response Analysis of an Accelerating Unbalanced Rotating System With Both Random and Interval Variables
,”
J. Sound Vib.
,
466
, p.
115047
.10.1016/j.jsv.2019.115047
31.
Koutsovasilis
,
P.
, and
Schweizer
,
B.
,
2014
, “
Parameter Variation and Data Mining of Oil-Film Bearings: A Stochastic Study on the Reynolds's Equation of Lubrication
,”
Arch. Appl. Mech.
,
84
(
5
), pp.
671
692
.10.1007/s00419-014-0824-3
32.
Cavalini
,
A. A.
, Jr.
,
Dourado
,
A. G. S.
,
Lara-Molina
,
F. A.
, and
Steffen
,
V.
, Jr.
,
2016
, “
Uncertainty Analysis of a Tilting-Pad Journal Bearing Using Fuzzy Logic Techniques
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061016
.10.1115/1.4034614
33.
Tyminski
,
N. C.
,
Tuckmantel
,
F. W.
,
Cavalca
,
K. L.
, and
de Castro
,
H. F.
,
2017
, “
Bayesian Inference Applied to Journal Bearing Parameter Identification
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
8
), pp.
2983
3004
.10.1007/s40430-017-0787-8
34.
Wale
,
G.
, and
Mba
,
D.
,
2005
, “
Identifying and Minimising Uncertainty for Experimental Journal Bearing Studies
,”
Int. J. Rotating Mach.
,
2005
(
3
), pp.
221
231
.10.1155/IJRM.2005.221
35.
Visnadi
,
L. B.
, and
de Castro
,
H. F.
,
2019
, “
Influence of Bearing Clearance and Oil Temperature Uncertainties on the Stability Threshold of Cylindrical Journal Bearings
,”
Mech. Mach. Theory
,
134
, pp.
57
73
.10.1016/j.mechmachtheory.2018.12.022
36.
Garoli
,
G. Y.
, and
de Castro
,
H. F.
,
2019
, “
Analysis of a Rotor-Bearing Nonlinear System Model Considering Fluid-Induced Instability and Uncertainties in Bearings
,”
J. Sound Vib.
,
448
, pp.
108
129
.10.1016/j.jsv.2019.02.021
37.
Wu
,
J.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Luo
,
Z.
,
2013
, “
A Chebyshev Interval Method for Nonlinear Dynamic Systems Under Uncertainty
,”
Appl. Math. Modell.
,
37
(
6
), pp.
4578
4591
.10.1016/j.apm.2012.09.073
38.
Fu
,
C.
,
Zhu
,
W.
,
Zheng
,
Z.
,
Sun
,
C.
,
Yang
,
Y.
, and
Lu
,
K.
,
2022
, “
Nonlinear Responses of a Dual-Rotor System With Rub-Impact Fault Subject to Interval Uncertain Parameters
,”
Mech. Syst. Signal Process.
,
170
, p.
108827
.10.1016/j.ymssp.2022.108827
39.
Fu
,
C.
,
Feng
,
G.
,
Ma
,
J.
,
Lu
,
K.
,
Yang
,
Y.
, and
Gu
,
F.
,
2020
, “
Predicting the Dynamic Response of Dual-Rotor System Subject to Interval Parametric Uncertainties Based on the Non-Intrusive Metamodel
,”
Mathematics
,
8
(
5
), p.
736
.10.3390/math8050736
40.
Someya
,
T.
,
1989
,
Journal-Bearing Databook
,
Springer-Verlag
,
Berlin
.
41.
Zhang
,
Y.
,
Li
,
X.
,
Dang
,
C.
,
Hei
,
D.
,
Wang
,
X.
, and
,
Y.
,
2019
, “
A Semianalytical Approach to Nonlinear Fluid Film Forces of a Hydrodynamic Journal Bearing With Two Axial Grooves
,”
Appl. Math. Modell.
,
65
, pp.
318
332
.10.1016/j.apm.2018.07.048
42.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
177
, pp.
157
234
.10.1098/rstl.1886.0005
43.
Gecgel
,
O.
,
Dias
,
J. P.
,
Ekwaro-Osire
,
S.
,
Alves
,
D. S.
,
Machado
,
T. H.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
, and
Cavalca
,
K. L.
,
2021
, “
Simulation-Driven Deep Learning Approach for Wear Diagnostics in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
143
(
8
), p.
084501
.10.1115/1.4049067
44.
Chen
,
W. J.
, and
Gunter
,
E. J.
,
2007
,
Introduction to Dynamics of Rotor-Bearing Systems
,
Trafford Publishing
,
Victoria, BC, Canada
.
45.
Ma
,
J.
,
Fu
,
C.
,
Zhang
,
H.
,
Chu
,
F.
,
Shi
,
Z.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2021
, “
Modelling Non-Gaussian Surfaces and Misalignment for Condition Monitoring of Journal Bearings
,”
Measurement
,
174
, p.
108983
.10.1016/j.measurement.2021.108983
46.
Lund
,
J.
, and
Thomsen
,
K.
,
1978
, “
A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings
,” Topics in Fluid Film Bearing Rotor Bearing System Design Optimization, p. 1000118, accessed Apr. 27, 2022, https://dyrobes.com/wp-content/uploads/2015/09/A-Calculation-Method_Oil-Lubricated_ASME-1982_linked.pdf
You do not currently have access to this content.