Abstract

As improved efficiency goals require ever smaller gaps between rotating turbomachinery blade tips and stationary outer casings, it becomes more important to understand the physics of what happens when a blade tip rubs against the casing. A key piece of information to be determined is the force exerted on the blade tip during the rub event. This paper presents a method of extracting the blade tip rub forces from experiments conducted at The Ohio State University Gas Turbine Laboratory. To identify the forces during the rub, three multi-axis load cells are mounted behind a segment of the casing to measure the forces exerted on the casing during the rub event. Recovering blade tip forcing from this load cell data requires creating an appropriate model that can relate the measured data at the load cells to the high-speed rotating blade loads. The continuous, repeated nature of the rubs in the experiment makes this a challenge. This paper discusses the creation and performance of a state-space realization model developed from stationary ping test data that is used to address these challenges. The model is augmented with information on the angular position of the blades from a rotary encoder and information on the angular span of the rub, which increases with rub depth. Challenges and solutions related to finding tangential frequency responses, simultaneous blade rubs, and irregularities in the experimental data are also discussed. This paper aims to summarize the process and effectiveness of this approach for finding blade tip forces, as well as lessons learned along the way.

References

1.
Park
,
M.
,
Hwang
,
Y.-H.
,
Choi
,
Y.-S.
, and
Kim
,
T.-G.
,
2002
, “
Analysis of a J69-T-25 Engine Turbine Blade Fracture
,”
Eng. Failure Anal.
,
9
(
5
), pp.
593
601
.10.1016/S1350-6307(02)00003-1
2.
Jiang Xie
,
Y.
,
Cai Wang
,
M.
,
Zhang
,
G.
, and
Chang
,
M.
,
2006
, “
Analysis of Superalloy Turbine Blade Tip Cracking During Service
,”
Eng. Failure Anal.
,
13
(
8
), pp.
1429
1436
.10.1016/j.engfailanal.2005.07.022
3.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2014
, “High-Pressure Compressor Blade Dynamics Under Aerodynamic and Blade-Tip Unilateral Contact Forcings,”
ASME
Paper No. GT2014-25675. 10.1115/GT2014-25675
4.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.10.1115/1.4006446
5.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2012
, “
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011010
.10.1115/1.4004951
6.
Legrand
,
M.
,
Pierre
,
C.
,
Cartraud
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Two-Dimensional Modeling of an Aircraft Engine Structural Bladed Disk-Casing Modal Interaction
,”
J. Sound Vib.
,
319
(
1–2
), pp.
366
391
.10.1016/j.jsv.2008.06.019
7.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495. 10.1115/GT2011-45495
8.
Ma
,
X.
, and
Matthews
,
A.
,
2007
, “
Investigation of Abradable Seal Coating Performance Using Scratch Testing
,”
Surf. Coat. Technol.
,
202
(
4–7
), pp.
1214
1220
.10.1016/j.surfcoat.2007.07.076
9.
Ma
,
X.
, and
Matthews
,
A.
,
2009
, “
Evaluation of Abradable Seal Coating Mechanical Properties
,”
Wear
,
267
(
9–10
), pp.
1501
1510
.10.1016/j.wear.2009.03.044
10.
Yi
,
M.
,
He
,
J.
,
Huang
,
B.
, and
Zhou
,
H.
,
1999
, “
Friction and Wear Behaviour and Abradability of Abradable Seal Coating
,”
Wear
,
231
(
1
), pp.
47
53
.10.1016/S0043-1648(99)00093-9
11.
Emery
,
A.
,
Wolak
,
J.
,
Etemad
,
S.
, and
Choi
,
S.
,
1983
, “
An Experimental Investigation of Temperatures Due to Rubbing at the Blade-Seal Interface in an Aircraft Compressor
,”
Wear
,
91
(
2
), pp.
117
130
.10.1016/0043-1648(83)90248-X
12.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrénoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. GT2020-14266. 10.1115/GT2020-14266
13.
Padova
,
C.
,
Dunn
,
M.
,
Barton
,
J.
,
Turner
,
K.
, and
Steen
,
T.
,
2011
, “
Controlled Fan Blade Tip/Shroud Rubs at Engine Conditions
,”
ASME
Paper No. GT2011-45223. 10.1115/GT2011-45223
14.
Langenbrunner
,
N.
,
Weaver
,
M.
,
Dunn
,
M. G.
,
Padova
,
C.
, and
Barton
,
J.
,
2015
, “
Dynamic Response of a Metal and a Cmc Turbine Blade During a Controlled Rub Event Using a Segmented Shroud
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062504
.10.1115/1.4028685
15.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M. G.
, and
Manwaring
,
S.
,
2007
, “
Experimental Results From Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
129
(
4
), pp.
713
723
.10.1115/1.2720869
16.
Padova
,
C.
,
Dunn
,
M. G.
,
Barton
,
J.
,
Turner
,
K.
,
Turner
,
A.
, and
DiTommaso
,
D.
,
2011
, “
Casing Treatment and Blade-Tip Configuration Effects on Controlled Gas Turbine Blade Tip/Shroud Rubs at Engine Conditions
,”
ASME J. Turbomach.
,
133
(
1
), p.
011016
.10.1115/1.4000539
17.
Nitschke
,
S.
,
Wollmann
,
T.
,
Ebert
,
C.
,
Behnisch
,
T.
,
Langkamp
,
A.
,
Lang
,
T.
,
Johann
,
E.
, and
Gude
,
M.
,
2019
, “
An Advanced Experimental Method and Test Rig Concept for Investigating the Dynamic Blade-Tip/Casing Interactions Under Engine-Like Mechanical Conditions
,”
Wear
,
422-423
(
3
), pp.
161
166
.10.1016/j.wear.2018.12.072
18.
Ahrens
,
J.
,
Ulbrich
,
H.
, and
Ahaus
,
G.
,
2000
, “
Measurement of Contact Forces During Blade Rubbing
,” Proceedings of the 7th International Conference on Vibrations in Rotating Machinery of the Institution of Mechanical Engineers, Nottingham, ImechE, London, Sept. 12–14, pp.
259
268
.
19.
Ma
,
H.
,
Wang
,
D.
,
Tai
,
X.
, and
Wen
,
B.
,
2017
, “
Vibration Response Analysis of Blade-Disk Dovetail Structure Under Blade Tip Rubbing Condition
,”
J. Vib. Control
,
23
(
2
), pp.
252
271
.10.1177/1077546315575835
20.
Ma
,
H.
,
Yin
,
F.
,
Wu
,
Z.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
Nonlinear Vibration Response Analysis of a Rotor-Blade System With Blade-Tip Rubbing
,”
Nonlinear Dyn.
,
84
(
3
), pp.
1225
1258
.10.1007/s11071-015-2564-5
21.
Juang
,
J.-N.
, and
Pappa
,
R. S.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid., Control Dyn.
,
8
(
5
), pp.
620
627
.10.2514/3.20031
22.
Callafon
,
R. A. D.
,
Moaveni
,
B.
,
Conte
,
J. P.
,
He
,
X.
, and
Udd
,
E.
,
2008
, “
General Realization Algorithm for Modal Identification of Linear Dynamic Systems
,”
J. Eng. Mech.
,
134
(
9
), pp.
712
722
.10.1061/(ASCE)0733-9399(2008)134:9(712)
23.
D'Souza
,
K.
,
Kurstak
,
E.
,
Ruff
,
K.
, and
Dunn
,
M. G.
,
2020
, “
A New Experimental Facility for Characterizing Bladed Disk Dynamics at Design Speed
,”
AIAA J.
,
58
(
6
), pp.
2682
2690
.10.2514/1.J058682
24.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M. G.
,
Manwaring
,
S.
,
Young
,
G.
,
Adams
,
M.
, and
Adams
,
M.
,
2004
, “
Development of an Experimental Capability to Produce Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
127
(
4
), pp.
726
735
.10.1115/GT2004-53322
You do not currently have access to this content.