Abstract

The incoming emission regulations for internal combustion engines are gradually introducing new pollutant species, which require greater complexity of the aftertreatment systems concerning layout, control, and diagnostics. This is the case of ammonia, which is injected into the exhaust gas through urea injections for NOx abatement in selective catalytic reduction (SCR) systems and can also be generated in three-way catalysts. However, ammonia slip requires its oxidation on a dedicated ammonia slip catalyst (ASC). The set composed of the urea injection system, SCR, and ASC requires control tools to ensure high NOx conversion efficiency and compliant ammonia slip under real driving conditions. These tasks are based on the use of NOx sensors ZrO2 pumping cell-based, which has the disadvantage of high cross-sensitivity to ammonia that can affect the measurement of NOx and compromise the SCR-ASC control strategies. The present work proposes a methodology to predict ammonia and NOx tailpipe emissions. For this purpose, a control-oriented ASC model was developed to use its ammonia slip prediction to determine the cross-sensitivity correction of the tailpipe NOx sensor. The model is based on a simplified solution of the transport equations of the species involved in the ASC reaction mechanism. The model was calibrated using steady- and quasi-steady-state tests performed in a Euro 6c engine. Finally, the performance of the proposed methodology to predict NOx and ammonia emissions was evaluated against experimental data corresponding to worldwide harmonized light vehicles test cycles (WLTC) applying different urea dosing strategies.

References

1.
Ko
,
J.
,
Jin
,
D.
,
Jang
,
W.
,
Myung
,
C. L.
,
Kwon
,
S.
, and
Park
,
S.
,
2017
, “
Comparative Investigation of NOx Emission Characteristics From a Euro 6-Compliant Diesel Passenger Car Over the NEDC and WLTC at Various Ambient Temperatures
,”
Appl. Energy
,
187
, pp.
652
662
.10.1016/j.apenergy.2016.11.105
2.
Jonson
,
J. E.
,
Borken-Kleefeld
,
J.
,
Simpson
,
D.
,
Nyíri
,
A.
,
Posch
,
M.
, and
Heyes
,
C.
,
2017
, “
Impact of Excess NOx Emissions From Diesel Cars on Air Quality, Public Health and Eutrophication in Europe
,”
Environ. Res. Lett.
,
12
(
9
), p.
094017
.10.1088/1748-9326/aa8850
3.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Split Fuel Injection and EGR on NOx and PM Emission Reduction in a Low Temperature Combustion (LTC) Mode Diesel Engine
,”
Energy
,
122
, pp.
249
264
.10.1016/j.energy.2017.01.050
4.
Joshi
,
A.
,
2020
, “
Review of Vehicle Engine Efficiency and Emissions
,”
SAE Int. J. Adv. Curr. Pract. Mobil.
,
2
, pp.
2479
2507
.10.4271/2020-01-0352
5.
Lisi
,
L.
, and
Cimino
,
S.
,
2020
, “
Poisoning of SCR Catalysts by Alkali and Alkaline Earth Metals
,”
Catalysts
,
10
(
12
), p.
1475
.10.3390/catal10121475
6.
Shin
,
Y.
,
Jung
,
Y.
,
Cho
,
C. P.
,
Pyo
,
Y. D.
,
Jang
,
J.
,
Kim
,
G.
, and
Kim
,
T. M.
,
2020
, “
NOx Abatement and N2O Formation Over urea-SCR Systems With Zeolite Supported Fe and Cu Catalysts in a Nonroad Diesel Engine
,”
Chem. Eng. J.
,
381
, p.
122751
.10.1016/j.cej.2019.122751
7.
Heywood
,
J. B.
,
2008
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
, New York.
8.
Guardiola
,
C.
,
Pla
,
B.
,
Bares
,
P.
, and
Mora
,
J.
,
2020
, “
Model-Based Ammonia Slip Observation for SCR Control and Diagnosis
,”
IEEE-ASME Trans Mech.
,
25
(
3
), pp.
1346
1353
.10.1109/TMECH.2020.2974341
9.
DiGiulio
,
C. D.
,
Pihl
,
J. A.
,
Parks
, II
,
J. E.
,
Amiridis
,
M. D.
, and
Toops
,
T. J.
,
2014
, “
Passive-Ammonia Selective Catalytic Reduction (SCR): Understanding NH3 Formation Over Close-Coupled Three Way Catalysts (TWC)
,”
Catal. Today
,
231
, pp.
33
45
.10.1016/j.cattod.2014.01.027
10.
Maunula
,
T.
,
Tuikka
,
M.
, and
Wolff
,
T.
,
2020
, “
The Reactions and Role of Ammonia Slip Catalysts in Modern Urea-SCR Systems
,”
Emiss. Control Sci. Technol.
,
6
(
4
), pp.
390
401
.10.1007/s40825-020-00171-1
11.
Ghosh
,
R. S.
,
Le
,
T. T.
,
Terlier
,
T.
,
Rimer
,
J. D.
,
Harold
,
M. P.
, and
Wang
,
D.
,
2020
, “
Enhanced Selective Oxidation of Ammonia in a Pt/Al2O3@ Cu/ZSM-5 Core–Shell Catalyst
,”
ACS Catal.
,
10
(
6
), pp.
3604
3617
.10.1021/acscatal.9b04288
12.
Dhillon
,
P. S.
,
Harold
,
M. P.
,
Wang
,
D.
,
Kumar
,
A.
, and
Joshi
,
S. Y.
,
2019
, “
Modeling and Analysis of Transport and Reaction in Washcoated Monoliths: Cu-SSZ-13 SCR and Dual-Layer Cu-SSZ-13+Pt/Al2O3 ASC
,”
React. Chem. Eng.
,
4
(
6
), pp.
1103
1115
.10.1039/C8RE00325D
13.
Torp
,
T. K.
,
Hansen
,
B. B.
,
Vennestrøm
,
P. N.
,
Janssens
,
T. V.
, and
Jensen
,
A. D.
,
2021
, “
Modeling and Optimization of Multi-Functional Ammonia Slip Catalysts for Diesel Exhaust Aftertreatment
,”
Emiss. Control Sci. Technol.
,
7
(
1
), pp.
7
25
.10.1007/s40825-020-00183-x
14.
Daya
,
R.
,
Desai
,
C.
, and
Vernham
,
B.
,
2018
, “
Development and O2 Validation of a Two-Site Kinetic Model for NH3-SCR Over Cu-SSZ-13. Part 2. Full-Scale Model Validation, ASC Model Development, and SCR-ASC Model Application
,”
Emiss. Control Sci. Technol.
,
4
(
3
), pp.
172
197
.10.1007/s40825-018-0094-6
15.
Sukumar
,
B.
,
Dai
,
J.
,
Johansson
,
A.
,
Markatou
,
P.
,
Ahmadinejad
,
M.
,
Watling
,
T.
,
Ranganath
,
B.
,
Nande
,
A.
, and
Szailer
,
T.
,
2012
, “
Modeling of Dual Layer Ammonia Slip Catalysts (ASC)
,”
SAE
Paper No. 2012-01-1294.10.4271/2012-01-1294
16.
Bissett
,
E. J.
,
2015
, “
An Asymptotic Solution for Washcoat Pore Diffusion in Catalytic Monoliths
,”
Emiss. Control Sci. Technol.
,
1
(
1
), pp.
3
16
.10.1007/s40825-015-0010-2
17.
Scheuer
,
A.
,
Votsmeier
,
M.
,
Schuler
,
A.
,
Gieshoff
,
J.
,
Drochner
,
A.
, and
Vogel
,
H.
,
2009
, “
NH3-Slip Catalysts: Experiments Versus Mechanistic Modelling
,”
Top. Catal.
,
52
(
13–20
), pp.
1847
1851
.10.1007/s11244-009-9351-9
18.
Ratnakar
,
R. R.
,
Dadi
,
R. K.
, and
Balakotaiah
,
V.
,
2018
, “
Multi-Scale Reduced Order Models for Transient Simulation of Multi-Layered Monolith Reactors
,”
Chem. Eng.
,
352
, pp.
293
305
.10.1016/j.cej.2018.04.053
19.
Jiang
,
Y.
,
Yang
,
J.
,
Tan
,
Y.
,
Yoon
,
S.
,
Chang
,
H. L.
,
Collins
,
J.
,
Maldonado
,
H.
,
Carlock
,
M.
,
Clark
,
N.
,
McKain
,
D.
,
Cocker
, III
,
D.
,
Karavalakis
,
G.
,
Johnson
,
K. C.
, and
Durbin
,
T. D.
,
2021
, “
Evaluation of Emissions Benefits of OBD-Based Repairs for Potential Application in a Heavy-Duty Vehicle Inspection and Maintenance Program
,”
Atmos. Environ.
,
247
, p.
118186
.10.1016/j.atmosenv.2021.118186
20.
Brosha
,
E. L.
,
Prikhodko
,
V. Y.
,
Kreller
,
C. R.
,
Pihl
,
J. A.
,
Curran
,
S.
,
Parks
,
J. E.
, and
Mukundan
,
R.
,
2017
, “
Response Characteristics of Stable Mixed-Potential NH 3 Sensors in Diesel Engine Exhaust
,”
Emission Control Sci. Technol.
,
3
(
1
), pp.
112
121
.10.1007/s40825-016-0050-2
21.
Bhardwaj
,
A.
,
Bae
,
H.
,
Namgung
,
Y.
,
Lim
,
J.
, and
Song
,
S. J.
,
2019
, “
Influence of Sintering Temperature on the Physical, Electrochemical and Sensing Properties of α-Fe2O3-SnO2 Nanocomposite Sensing Electrode for a Mixed-Potential Type NOx Sensor
,”
Ceram. Int.
,
45
(
2
), pp.
2309
2318
.10.1016/j.ceramint.2018.10.146
22.
Aliramezani
,
M.
,
Ebrahimi
,
K.
,
Koch
,
C. R.
, and
Hayes
,
R. E.
,
2016
, “
NOx Sensor Ammonia Cross Sensitivity Analysis Using a Simplified Physics Based Model
,” Proceedings of Combustion Institute Canadian Section (
CICS
),
Spring Technical Meeting University of Waterloo
,
Montreal, QC
, Canada, May 9–11, pp.
15
18
.https://www.google.com/search?q=Lahaina&oq=Lahaina&aqs=chrome..69i57.174j0j9&sourceid=chrome&ie=UTF-8
23.
Pla
,
B.
,
Piqueras
,
P.
,
Bares
,
P.
, and
Aronis
,
A.
,
2021
, “
NOx Sensor Cross Sensitivity Model and Simultaneous Prediction of NOx and NH3 Slip From Automotive Catalytic Converters Under Real Driving Conditions
,”
Int. J. Engine Res.
,
22
(
10
), pp.
3209
3218
.10.1177/1468087420966406
24.
Guardiola
,
C.
,
Dolz
,
V.
,
Pla
,
B.
, and
Mora
,
J.
,
2016
, “
Fast Estimation of Diesel Oxidation Catalysts Inlet Gas Temperature
,”
Control Eng. Pract.
,
56
, pp.
148
156
.10.1016/j.conengprac.2016.08.020
25.
Nova
,
I.
, and
Tronconi
,
E.
,
2014
,
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts
,
Springer
,
New York
.
26.
Piqueras
,
P.
,
García
,
A.
,
Monsalve-Serrano
,
J.
, and
Ruiz
,
M. J.
,
2019
, “
Performance of a Diesel Oxidation Catalyst Under Diesel-Gasoline Reactivity Controlled Compression Ignition Combustion Conditions
,”
Energy Convers. Manage.
,
196
, pp.
18
31
.10.1016/j.enconman.2019.05.111
27.
Gulati
,
S. T.
,
1988
, “
Cell Design for Ceramic Monoliths for Catalytic Converter Application
,”
SAE
Paper No. 881685.10.4271/881685
You do not currently have access to this content.