Abstract

Accurate prediction of injection profiles is a critical aspect of linking injector operation with engine performance and emissions. However, highly resolved injector simulations can take one to two weeks of wall-clock time, which is incompatible with engine design cycles with desired turnaround times of less than a day. Hence, it is important to reduce the time-to-solution of the internal flow simulations by several orders of magnitude to make it compatible with engine simulations. This work demonstrates a data-driven approach for tackling the computational overhead of injector simulations, whereby the transient injection profiles are emulated for a side-oriented, single-hole diesel injector using a Bayesian machine-learning framework. First, an interpretable Bayesian learning strategy was employed to understand the effect of design parameters on the total void fraction field. Then, autoencoders are utilized for efficient dimensionality reduction of the flowfields. Gaussian process models are finally used to predict the spatiotemporal void fraction field at the injector exit for unknown operating conditions. The Gaussian process models produce principled uncertainty estimates associated with the emulated flowfields, which provide the engine designer with valuable information of where the data-driven predictions can be trusted in the design space. The Bayesian flowfield predictions are compared with the corresponding predictions from a deep neural network, which has been transfer-learned from static needle simulations from a previous work by the authors. The emulation framework can predict the void fraction field at the exit of the orifice within a few seconds, thus achieving a speed-up factor of up to 38 × 106 over the traditional simulation-based approach of generating transient injection maps.

References

1.
Pratama
,
R. H.
,
Huang
,
W.
, and
Moon
,
S.
,
2021
, “
Unveiling Needle Lift Dependence on Near-Nozzle Spray Dynamics of Diesel Injector
,”
Fuel
,
285
, p.
119088
.10.1016/j.fuel.2020.119088
2.
Westlye
,
F. R.
,
Battistoni
,
M.
,
Skeen
,
S. A.
,
Manin
,
J.
,
Pickett
,
L. M.
, and
Ivarsson
,
A.
,
2016
, “
Penetration and Combustion Characterization of Cavitating and Non-Cavitating Fuel Injectors Under Diesel Engine Conditions
,”
SAE
Technical Paper No. 2016-01-0860.10.4271/2016-01-0860
3.
Maes
,
N.
,
Skeen
,
S. A.
,
Bardi
,
M.
,
Fitzgerald
,
R. P.
,
Malbec
,
L.-M.
,
Bruneaux
,
G.
,
Pickett
,
L. M.
,
Yasutomi
,
K.
, and
Martin
,
G.
,
2020
, “
Spray Penetration, Combustion, and Soot Formation Characteristics of the ECN Spray C and Spray D Injectors in Multiple Combustion Facilities
,”
Appl. Therm. Eng.
,
172
, p.
115136
.10.1016/j.applthermaleng.2020.115136
4.
Battistoni
,
M.
,
Som
,
S.
, and
Powell
,
C. F.
,
2019
, “
Highly Resolved Eulerian Simulations of Fuel Spray Transients in Single and Multi-Hole Injectors: Nozzle Flow and Near-Exit Dynamics
,”
Fuel
,
251
, pp.
709
729
.10.1016/j.fuel.2019.04.076
5.
Magnotti
,
G.
,
Kundu
,
P.
,
Nunno
,
A.
, and
Som
,
S.
,
2021
, “
Linking Cavitation Erosion in a Multi-Hole Injector With Spray and Combustion Development
,”
15th Triennial International Conference on Liquid Atomization and Spray Systems-ICLASS 2021
,
Edinburgh, UK, Aug. 29–Sept. 2
, p.
54
.http://journals.ed.ac.uk/ICLASS_Edinburgh/article/view/5827
6.
Cristofaro
,
M.
,
Edelbauer
,
W.
,
Koukouvinis
,
P.
, and
Gavaises
,
M.
,
2020
, “
A Numerical Study on the Effect of Cavitation Erosion in a Diesel Injector
,”
Appl. Math. Modell.
,
78
, pp.
200
216
.10.1016/j.apm.2019.09.002
7.
Pandal
,
A.
,
Garcia-Oliver
,
J. M.
, and
Pastor
,
J. M.
,
2020
, “
Eulerian CFD Modeling of Nozzle Geometry Effects on ECN Sprays A and D: Assessment and Analysis
,”
Int. J. Engine Res.
,
21
(
1
), pp.
73
88
.10.1177/1468087419882500
8.
Kutz
,
J. N.
,
2017
, “
Deep Learning in Fluid Dynamics
,”
J. Fluid Mech.
,
814
, pp.
1
4
.10.1017/jfm.2016.803
9.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
10.
Mondal
,
S.
,
Torelli
,
R.
,
Lusch
,
B.
,
Milan
,
P. J.
, and
Magnotti
,
G. M.
,
2021
, “
Accelerating the Generation of Static Coupling Injection Maps Using a Data-Driven Emulator
,”
SAE Int. J. Adv. Curr. Pract. Mobility
,
3
(
3
), pp.
1408
1424
.10.4271/2021-01-0550
11.
Milan
,
P. J.
,
Torelli
,
R.
,
Lusch
,
B.
, and
Magnotti
,
G. M.
,
2020
, “
Data-Driven Model Reduction of Multiphase Flow in a Single-Hole Automotive Injector
,”
Atomization Sprays
,
30
(
6
), pp.
401
429
.10.1615/AtomizSpr.2020034830
12.
Milan
,
P. J.
,
Mondal
,
S.
,
Torelli
,
R.
,
Lusch
,
B.
,
Maulik
,
R.
, and
Magnotti
,
G. M.
,
2021
, “
Data-Driven Modeling of Large-Eddy Simulations for Fuel Injector Design
,”
AIAA
Paper No. 2021–1016.10.2514/6.2021-1016
13.
Yosinski
,
J.
,
Clune
,
J.
,
Bengio
,
Y.
, and
Lipson
,
H.
,
2014
, “
How Transferable Are Features in Deep Neural Networks?
,” Advances in Neural Information Processing Systems-NIPS 2014, NeurIPS,
Montréal, QC, Canada
, accessed Sept. 30, 2022, http://papers.nips.cc/paper/by-source-2014-1703
14.
Mondal
,
S.
,
Lusch
,
B.
,
Maulik
,
R.
,
Torelli
,
R.
, and
Magnotti
,
G. M.
,
2021
, “
Exploration of Transfer Learning for Prediction of Transient Injection Maps
,”
31st Annual Conference on Liquid Atomization and Spray Systems-ILASS-Americas
, Virtual Event, Madison, WI, May 17–19, Paper No. 47.
15.
Higgins
,
I.
,
Matthey
,
L.
,
Pal
,
A.
,
Burgess
,
C.
,
Glorot
,
X.
,
Botvinick
,
M.
,
Mohamed
,
S.
, and
Lerchner
,
A.
,
2017
, “
β-VAE: Learning Basic Visual Concepts With a Constrained Variational Framework
,”
5th International Conference on Learning Representations-ICLR 2017
,
Toulon, France
, Apr. 24–26, pp.
1
22
.https://openreview.net/pdf?id=Sy2fzU9gl
16.
Rasmussen
,
C.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
,
The MIT Press
, Cambridge, MA.
17.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2021
,
Converge (v3.0)
,
Convergent Science, Inc
.,
Madison, WI
.
18.
Yasutomi
,
K.
,
Hwang
,
J.
,
Pickett
,
L. M.
,
Sforzo
,
B.
,
Matusik
,
K.
, and
Powell
,
C. F.
,
2020
, “
Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector
,”
SAE
Paper No. 2020-01-0830.10.4271/2020-01-0830
19.
Guo
,
H.
,
Torelli
,
R.
,
Bautista Rodriguez
,
A.
,
Tekawade
,
A.
,
Sforzo
,
B.
,
Powell
,
C.
, and
Som
,
S.
,
2020
, “
Internal Nozzle Flow Simulations of the ECN Spray C Injector Under Realistic Operating Conditions
,”
SAE Int. J. Adv. Curr. Practices Mobility
,
2
(
4
), pp.
2229
2240
.10.4271/2020-01-1154
20.
Tekawade
,
A.
,
Sforzo
,
B.
,
Matusik
,
K.
,
Fezzaa
,
K.
,
Kastengren
,
A.
, and
Powell
,
C.
,
2020
, “
Time-Resolved 3D Imaging of Two-Phase Fluid Flow Inside a Steel Fuel Injector Using Synchrotron X-Ray Tomography
,”
Sci. Rep.
,
10
(
1
), p.
8674
.10.1038/s41598-020-65701-x
21.
Battistoni
,
M.
,
Duke
,
D. J.
,
Swantek
,
A. B.
,
Tilocco
,
F. Z.
,
Powell
,
C. F.
, and
Som
,
S.
,
2015
, “
Effects of Noncondensable Gas on Cavitating Nozzles
,”
Atomization Sprays
,
25
(
6
), pp.
453
483
.10.1615/AtomizSpr.2015011076
22.
Magnotti
,
G. M.
, and
Som
,
S.
,
2020
, “
Assessing Fuel Property Effects on Cavitation and Erosion Propensity Using a Computational Fuel Screening Tool
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111015
.10.1115/1.4048457
23.
Husslage
,
B. G. M.
,
Rennen
,
G.
,
van Dam
,
E. R.
, and
den Hertog
,
D.
,
2011
, “
Space-Filling Latin Hypercube Designs for Computer Experiments
,”
Optim. Eng.
,
12
(
4
), pp.
611
630
.10.1007/s11081-010-9129-8
24.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
25.
Bishop
,
C. M.
,
2007
,
Pattern Recognition and Machine Learning
,
Springer
,
Switzerland
.
26.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
, et al.,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation-OSDI 2016
, Savannah, GA, Nov. 2–4, pp.
265
283
.https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
27.
Ghahramani
,
Z.
,
2015
, “
Probabilistic Machine Learning and Artificial Intelligence
,”
Nature
,
521
(
7553
), pp.
452
459
.10.1038/nature14541
28.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, and
He
,
Q.
,
2021
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.10.1109/JPROC.2020.3004555
29.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,”
2nd International Conference on Learning Representations-ICLR 2014
, Banff, AB, Canada, Apr. 14–16, pp.
1
14
.https://openreview.net/forum?id=33X9fd2-9FyZd
30.
Williams
,
C. K. I.
,
1996
, “
Computing With Infinite Networks
,” Advances in Neural Information Processing Systems-NIPS 1996, NeurIPS,
Denver, CO
, accessed Sept. 30, 2022, http://papers.nips.cc/paper/1197-computing-with-infinite-networks
31.
Paciorek
,
C.
, and
Schervish
,
M.
,
2004
, “
Nonstationary Covariance Functions for Gaussian Process Regression
,” Advances in Neural Information Processing Systems-NIPS 2003, NeurIPS,
Vancouver, QC, Canada
, accessed Sept. 30, 2022, http://papers.nips.cc/paper/2350-nonstationary-covariance-functions-for-gaussian-process-regression.pdf
32.
Doersch
,
C.
,
2016
, “Tutorial Variational Autoencoders,”
J. Corr
, Carnegie Mellon/UC Berkeley, Berkeley, CA.https://arxiv.org/pdf/1606.05908.pdf
33.
Caruana
,
R.
,
Lawrence
,
S.
, and
Giles
,
L.
,
2000
, “
Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping
,” Advances in Neural Information Processing Systems, NIPS 2000, NeurIPS, Denver, CO, accessed Sept. 30, 2022, https://papers.nips.cc/paper/1895-overfitting-in-neural-nets-backpropagation-conjugate-gradient-and-early-stopping.pdf
34.
Rasmussen
,
C.
, and
Ghahramani
,
Z.
,
2001
, “
Occam's Razor
,” Advances in Neural Information Processing Systems, NIPS 2000, NeurIPS, Denver, CO, accessed Sept. 30, 2022, http://papers.neurips.cc/paper/1925-occams-razor.pdf
35.
Rolnick
,
D.
,
Veit
,
A.
,
Belongie
,
S. J.
, and
Shavit
,
N.
,
2017
, “
Deep Learning is Robust to Massive Label Noise
,”
6th International Conference on Learning Representations-ICLR 2018
,
Vancouver, QC, Canada, Apr. 30–May 3, pp. 1–10
.https://arxiv.org/pdf/1705.10694.pdf
36.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
de Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.10.1109/JPROC.2015.2494218
37.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations-ICLR 2015
, San Diego, CA, May 7–9, pp.
1
15
.https://www.researchgate.net/publication/269935079_Adam_A_Method_for_Stochastic_Optimization
You do not currently have access to this content.