Abstract

The flame transfer function (FTF) has been experimentally investigated for a premixed, turbulent and highly swirled flame in rectangular enclosures with varying aspect ratio. A range of equivalence ratios and inlet bulk velocities are considered to vary the length of the flame. Increasing confinement is also shown to increase flame length. More confined flames become increasingly asymmetric, with significant changes to the mean flame shape. Characteristic peaks and dips are observed in the FTF gain for several configurations, caused by constructive and destructive interference between different sources of flow perturbations. Changes in the geometrical confinement distinctly affects these interactions, with FTFs in the most confined chamber containing more pronounced peaks and dips. Analysis of the phase-averaged dynamics has been conducted for two limiting operational conditions in the least and most confined enclosures: a short flame at a low bulk velocity and high equivalence ratio condition; and a long flame at a high velocity and low equivalence ratio condition. The analysis of the short flames shows similar behavior in both enclosures, both in terms of the global response and the local structure of the heat release rate oscillations. Small differences in local response symmetry in the flame due to the close confinement do not affect the global flame response. By comparison, close confinement significantly affects the symmetry of the flame dynamics in the long flame. However, the changes in symmetry do not significantly modify the response, and more important is the change in flame length, which significantly alters the cutoff frequency, reducing the gain at high frequencies.

References

1.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, p. P1.10.1017/jfm.2020.239
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
3.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT2002-30064. 10.1115/GT2002-30064
4.
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2003
, “
Assessment of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Technol.
,
175
(
3
), pp.
453
476
.10.1080/00102200302382
5.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688. 10.1115/GT2003-38688
6.
Camporeale
,
S.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2011
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011506
.10.1115/1.4000606
7.
Buschmann
,
P. E.
,
Mensah
,
G. A.
,
Nicoud
,
F.
, and
Moeck
,
J. P.
,
2020
, “
Solution of Thermoacoustic Eigenvalue Problems With a Noniterative Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031022
.10.1115/1.4045076
8.
Kim
,
K. T.
, and
Santavicca
,
D.
,
2013
, “
Generalization of Turbulent Swirl Flame Transfer Functions in Gas Turbine Combustors
,”
Combust. Sci. Technol.
,
185
(
7
), pp.
999
1015
.10.1080/00102202.2012.752734
9.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
10.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2018
, “
A Comparison of the Transfer Functions and Flow Fields of Flames With Increasing Swirl Number
,”
ASME
Paper No. GT2018-76105.10.1115/GT2018-76105
11.
Schuller
,
T.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2002
, “
Modeling Tools for the Prediction of Premixed Flame Transfer Functions
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
107
113
.10.1016/S1540-7489(02)80018-9
12.
Baillot
,
F.
,
Durox
,
D.
, and
Prud'homme
,
R.
,
1992
, “
Experimental and Theoretical Study of a Premixed Vibrating Flame
,”
Combust. Flame
,
88
(
2
), pp.
149
168
.10.1016/0010-2180(92)90049-U
13.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.10.1016/S0082-0784(00)80279-9
14.
Tay Wo Chong
,
L.
,
Komarek
,
T.
,
Kaess
,
R.
,
Fö ller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions From LES of a Premixed Swirl Burner
,”
ASME
Paper No. GT2010-22769.10.1115/GT2010-22769
15.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and v-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
16.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
17.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of premixed flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
18.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
19.
Birbaud
,
A.-L.
,
Durox
,
D.
,
Ducruix
,
S.
, and
Candel
,
S.
,
2007
, “
Dynamics of Confined Premixed Flames Submitted to Upstream Acoustic Modulations
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1257
1265
.10.1016/j.proci.2006.07.122
20.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Scaling the Flame Transfer Function of Confined Premixed Conical Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1007
1014
.10.1016/j.proci.2012.06.056
21.
De Rosa
,
A. J.
,
Peluso
,
S. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2015
, “
The Effect of Confinement on the Structure and Dynamic Response of Lean-Premixed, Swirl-Stabilized Flames
,”
ASME
Paper No. GTP-15-1235. 10.1115/GTP-15-1235
22.
Nygård
,
H. T.
, and
Worth
,
N. A.
,
2021
, “
Flame Transfer Functions and Dynamics of a Closely Confined Premixed Bluff Body Stabilized Flame With Swirl
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041011
.10.1115/1.4049513
23.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
24.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2017
, “
Effect of Equivalence Ratio on the Modal Dynamics of Azimuthal Combustion Instabilities
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3743
3751
.10.1016/j.proci.2016.06.115
25.
Nygård
,
H. T.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2019
, “
Flame Dynamics of Azimuthal Forced Spinning and Standing Modes in an Annular Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5113
5120
.10.1016/j.proci.2018.08.034
26.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
(
4
), pp.
487
510
.10.1016/0010-2180(96)00049-1
27.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2019
, “
Impact of Swirl and Bluff-Body on the Transfer Function of Premixed Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5197
5204
.10.1016/j.proci.2018.06.148
28.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2011
, “
Theoretical and Experimental Determination of the Flame Transfer Function of Confined Premixed Conical Flames
,”
7th Mediterranean Combustion Symposium
, Chia Laguna, Cagliari, Sardinia, Italy, Sept. 11–15, Vol.
36
, pp.
58
64
.https://www.semanticscholar.org/paper/THEORETICAL-AND-EXPERIMENTAL-DETERMINATION-OF-THE-Cuquel-Durox/63b47a2b55a7d133ef8bb58c55a5de2bc78b8509
29.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
954
961
.10.1115/1.2720545
30.
Seybert
,
A. F.
, and
Ross
,
D. F.
,
1977
, “
Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique
,”
J. Acoust. Soc. Am.
,
61
(
5
), pp.
1362
1370
.10.1121/1.381403
31.
Åbom
,
M.
,
1991
, “
Measurement of the Scattering-Matrix of Acoustical Two-Ports
,”
Mech. Syst. Signal Process.
,
5
(
2
), pp.
89
104
.10.1016/0888-3270(91)90017-Y
32.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
33.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.10.1115/1.3204532
34.
Lieuwen
,
T.
,
2005
, “
Nonlinear Kinematic Response of Premixed Flames to Harmonic Velocity Disturbances
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1725
1732
.10.1016/j.proci.2004.07.020
35.
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2014
, “
Flame Dynamics and Unsteady Heat Release Rate of Self-Excited Azimuthal Modes in an Annular Combustor
,”
Combust. Flame
,
161
(
10
), pp.
2565
2578
.10.1016/j.combustflame.2014.03.021
36.
Mercier
,
R.
,
Guiberti
,
T.
,
Chatelier
,
A.
,
Durox
,
D.
,
Gicquel
,
O.
,
Darabiha
,
N.
,
Schuller
,
T.
, and
Fiorina
,
B.
,
2016
, “
Experimental and Numerical Investigation of the Influence of Thermal Boundary Conditions on Premixed Swirling Flame Stabilization
,”
Combust. Flame
,
171
, pp.
42
58
.10.1016/j.combustflame.2016.05.006
37.
Mejia
,
D.
,
Selle
,
L.
,
Bazile
,
R.
, and
Poinsot
,
T.
,
2015
, “
Wall-Temperature Effects on Flame Response to Acoustic Oscillations
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3201
3208
.10.1016/j.proci.2014.07.015
38.
Mejia
,
D.
,
Miguel-Brebion
,
M.
,
Ghani
,
A.
,
Kaiser
,
T.
,
Duchaine
,
F.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2018
, “
Influence of Flame-Holder Temperature on the Acoustic Flame Transfer Functions of a Laminar Flame
,”
Combust. Flame
,
188
, pp.
5
12
.10.1016/j.combustflame.2017.09.016
39.
Hauser
,
M.
,
Lorenz
,
M.
, and
Sattelmayer
,
T.
,
2011
, “
Influence of Transversal Acoustic Excitation of the Burner Approach Flow on the Flame Structure
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
041501
.10.1115/1.4002175
40.
Æsøy
,
E.
,
Nygård
,
H. T.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2022
, “
Tailoring the Gain and Phase of the Flame Transfer Function Through Targeted Convective-Acoustic Interference
,”
Combust. Flame
,
236
, p.
111813
.10.1016/j.combustflame.2021.111813
41.
Bonciolini
,
G.
,
Ebi
,
D.
,
Doll
,
U.
,
Weilenmann
,
M.
, and
Noiray
,
N.
,
2019
, “
Effect of Wall Thermal Inertia Upon Transient Thermoacoustic Dynamics of a Swirl-Stabilized Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5351
5358
.10.1016/j.proci.2018.06.229
42.
Degenève
,
A.
,
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
,
Vicquelin
,
R.
, and
Schuller
,
T.
,
2019
, “
Analysis of Wall Temperature and Heat Flux Distributions in a Swirled Combustor Powered by a Methane-Air and a CO2-Diluted Oxyflame
,”
Fuel
,
236
, pp.
1540
1547
.10.1016/j.fuel.2018.09.012
You do not currently have access to this content.