Abstract

This study investigates the role of hydrodynamic instabilities on near-lean blowout (LBO) flame shapes in a swirl-stabilized spray combustor. Hydrodynamic instabilities often manifest themselves in swirling flows as a helical vortex that winds around the vortex breakdown bubble. However, the heat released from combustion tends to suppress coherent vortex structures, which can limit the helical vortex to certain combustor geometries and operating conditions. Flame shape changes often accompany changes in hydrodynamic stability because they reposition the heat release and consequently modify the degree of coherent vortex suppression. In this study, laser diagnostics measurements were used to characterize the flow fields and spray patterns corresponding to different flame shapes that were observed in the Air Force Research Laboratory (AFRL) referee combustor. In particular, the flame fluctuated between its original shape, FS1, and a new flame shape, FS2, when the combustor operated on the threshold of LBO. Proper orthogonal decomposition (POD) was used to analyze the measurements. POD showed that the appearance of FS2 coincided with coherent vortex structures that resembled those in the hydrodynamically unstable nonreacting flow field. Furthermore, fuel Mie scattering measurements and phase-averages of the velocity field provided evidence that the FS2 spray was periodically disturbed by a helical vortex. Near the swirler exit, this helical vortex structure involved both outer and inner shear layer vortices that appeared to be synchronized with each other. However, the inner shear layer vortices decayed as the flow progressed downstream and only the outer shear layer vortices remained throughout the measurements' field of view. In contrast, there was no indication of a helical vortex structure in either the flow field or fuel spray measurements corresponding to FS1.

References

1.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.10.1016/j.proci.2010.06.103
2.
Stöhr
,
M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2015
, “
Transient Effects of Fuel–Air Mixing in a Partially-Premixed Turbulent Swirl Flame
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3327
3335
.10.1016/j.proci.2014.06.095
3.
Lückoff
,
F.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2020
, “
Impact of the Precessing Vortex Core on NOx Emissions in Premixed Swirl-Stabilized Flames—An Experimental Study
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111010
.10.1115/1.4048603
4.
Stöhr
,
M.
,
Oberleithner
,
K.
,
Sieber
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2018
, “
Experimental Study of Transient Mechanisms of Bistable Flame Shape Transitions in a Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
011503
.10.1115/1.4037724
5.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
6.
Frederick
,
M.
,
Manoharan
,
K.
,
Dudash
,
J.
,
Brubaker
,
B.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2018
, “
Impact of Precessing Vortex Core Dynamics on Shear Layer Response in a Swirling Jet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061503
.10.1115/1.4038324
7.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C.
, and
Meier
,
W.
,
2010
, “
Flow–Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.10.1016/j.combustflame.2010.07.011
8.
Hemchandra
,
S.
,
Shanbhogue
,
S.
,
Hong
,
S.
, and
Ghoniem
,
A. F.
,
2018
, “
Role of Hydrodynamic Shear Layer Stability in Driving Combustion Instability in a Premixed Propane-Air Backward-Facing Step Combustor
,”
Phys. Rev. Fluids
,
3
(
6
), p.
063201
.10.1103/PhysRevFluids.3.063201
9.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.10.1016/j.combustflame.2012.03.020
10.
Stöhr
,
M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Effects of Damkohler Number on Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3107
3115
.10.1016/j.proci.2012.06.086
11.
Renaud
,
A.
,
Ducruix
,
S.
, and
Zimmer
,
L.
,
2019
, “
Experimental Study of the Precessing Vortex Core Impact on the Liquid Fuel Spray in a Gas Turbine Model Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111022
.10.1115/1.4044998
12.
Mukherjee
,
A.
,
Muthichur
,
N.
,
More
,
C.
,
Gupta
,
S.
, and
Hemchandra
,
S.
,
2021
, “
The Role of the Centerbody Wake on the Precessing Vortex Core Dynamics of a Swirl Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051019
.10.1115/1.4050155
13.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H. C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
14.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
15.
Liang
,
H.
, and
Maxworthy
,
T.
,
2005
, “
An Experimental Investigation of Swirling Jets
,”
J. Fluid Mech.
,
525
, pp.
115
159
.10.1017/S0022112004002629
16.
Oberleithner
,
K.
,
Paschereit
,
C. O.
, and
Wygnanski
,
I.
,
2014
, “
On the Impact of Swirl on the Growth of Coherent Structures
,”
J. Fluid Mech.
,
741
, pp.
156
199
.10.1017/jfm.2013.669
17.
Manoharan
,
K.
,
Frederick
,
M.
,
Clees
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2020
, “
A Weakly Nonlinear Analysis of the Precessing Vortex Core Oscillation in a Variable Swirl Turbulent Round Jet
,”
J. Fluid Mech.
,
884
, p.
A29
.10.1017/jfm.2019.903
18.
Roy
,
S.
,
Yi
,
T.
,
Jiang
,
N.
,
Gunaratne
,
G. H.
,
Chterev
,
I.
,
Emerson
,
B.
,
Lieuwen
,
T.
,
Caswell
,
A. W.
, and
Gord
,
J. R.
,
2017
, “
Dynamics of Robust Structures in Turbulent Swirling Reacting Flows
,”
J. Fluid Mech.
,
816
, pp.
554
585
.10.1017/jfm.2017.71
19.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2014
, “
Impact of Steam-Dilution on the Flame Shape and Coherent Structures in Swirl-Stabilized Combustors
,”
Combust. Sci. Technol.
,
186
(
7
), pp.
889
911
.10.1080/00102202.2014.890597
20.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Paschereit
,
C. O.
,
2013
, “
Why Nonuniform Density Suppresses the Precessing Vortex Core
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121506
.10.1115/1.4025130
21.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.10.1016/j.proci.2014.07.035
22.
Shanbhogue
,
S.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
23.
Erickson
,
R.
, and
Soteriou
,
M.
,
2011
, “
The Influence of Reactant Temperature on the Dynamics of Bluff Body Stabilized Premixed Flames
,”
Combust. Flame
,
158
(
12
), pp.
2441
2457
.10.1016/j.combustflame.2011.05.006
24.
An
,
Q.
,
Kwong
,
W. Y.
,
Geraedts
,
B. D.
, and
Steinberg
,
A. M.
,
2016
, “
Coupled Dynamics of Lift-Off and Precessing Vortex Core Formation in Swirl Flames
,”
Combust. Flame
,
168
(
6
), pp.
228
239
.10.1016/j.combustflame.2016.03.011
25.
Rock
,
N.
,
Stouffer
,
S.
,
Hendershott
,
T.
,
Corporan
,
E.
, and
Wrzesinski
,
P.
,
2021
, “
Characterization of Coherent Flow Structures in a Swirl-Stabilized Spray Combustor
,”
AIAA
Paper No. 2021-0791. 10.2514/6.2021-0791
26.
Colket
,
M.
, and
Heyne
,
J.
,
2021
, “
Fuel Effects on Operability of Aircraft Gas Turbine Combustors
,”
Progress in Astronautics Aeronautics AIAA
, 210,
American Institute of Aeronautics and Astronautics, Inc.
, Reston, VA.
27.
Depardon
,
S.
,
Lasserre
,
J. J.
,
Boueilh
,
J. C.
,
Brizzi
,
L. E.
, and
Borée
,
J.
,
2005
, “
Skin Friction Pattern Analysis Using Near-Wall PIV
,”
Exp. Fluids
,
39
(
5
), pp.
805
818
.10.1007/s00348-005-0014-8
28.
Baghaie
,
A.
,
2019
, “
Robust Principal Component Analysis for Background Estimation of Particle Image Velocimetry Data
,” IEEE LISAT Paper No.
8817345
.10.1109/LISAT.2019.8817345
29.
Kheirkhah
,
S.
,
Cirtwill
,
J. D. M.
,
Saini
,
P.
,
Venkatesan
,
K.
, and
Steinberg
,
A. M.
,
2017
, “
Dynamics and Mechanisms of Pressure, Heat Release Rate, and Fuel Spray Coupling During Intermittent Thermoacoustic Oscillations in a Model Aeronautical Combustor at Elevated Pressure
,”
Combust. Flame
,
185
(
11
), pp.
319
334
.10.1016/j.combustflame.2017.07.017
30.
Saini
,
P.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2016
, “
Development and Evaluation of Gappy-POD as a Data Reconstruction Technique for Noisy PIV Measurements in Gas Turbine Combustors
,”
Exp. Fluids
,
57
(
7
), p. 122.10.1007/s00348-016-2208-7
31.
Emerson
,
B.
, and
Ozogul
,
H.
,
2020
, “
Experimental Characterization of Liquid–Gas Slip in High-Pressure, Swirl-Stabilized, Liquid-Fueled Combustors
,”
Exp. Fluids
,
61
(
3
), p. 72.10.1007/s00348-020-2898-8
32.
Monfort
,
J.
,
Stouffer
,
S. D.
,
Hendershott
,
T.
,
Wrzesinski
,
P.
,
Foley
,
W.
, and
Rein
,
K. D.
,
2017
, “
Evaluating Combustion Instability in a Swirl-Stabilized Combustor Using Simultaneous Pressure, Temperature, and Chemiluminescense Measurements at High Repetition Rates
,”
AIAA
Paper No. 2017-1101. 10.2514/6.2017-1101
33.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B.
,
Schmidt
,
O.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
34.
Lacarelle
,
A.
,
Faustmann
,
T.
,
Greenblatt
,
D.
,
Paschereit
,
C. O.
,
Lehmann
,
O.
,
Luchtenburg
,
D. M.
, and
Noack
,
B. R.
,
2009
, “
Spatiotemporal Characterization of a Conical Swirler Flow Field Under Strong Forcing
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031504
.10.1115/1.2982139
35.
Stouffer
,
S.
,
Hendershott
,
T.
,
Monfort
,
J.
,
Diemer
,
J.
,
Corporan
,
E.
,
Wrzesinski
,
P.
, and
Caswell
,
A.
,
2017
, “
Lean Blowout and Ignition Characteristics of Conventional and Surrogate Fuels Measured in a Swirl Stabilized Combustor
,”
AIAA
Paper No. 2017-1954. 10.2514/6.2017-1954
36.
Esclapez
,
L.
,
Ma
,
P. C.
,
Mayhew
,
E.
,
Xu
,
R.
,
Stouffer
,
S.
,
Lee
,
T.
,
Wang
,
H.
, and
Ihme
,
M.
,
2017
, “
Fuel Effects on Lean Blow-Out in a Realistic Gas Turbine Combustor
,”
Combust. Flame
,
181
(
7
), pp.
82
99
.10.1016/j.combustflame.2017.02.035
37.
Panchal
,
A.
, and
Menon
,
S.
,
2022
, “
Large Eddy Simulation of Fuel Sensitivity in a Realistic Spray Combustor I. Near Blowout Analysis
,”
Combust. Flame
,
240
, p.
112162
.10.1016/j.combustflame.2022.112162
38.
Emerson
,
B.
,
O'Connor
,
J.
,
Juniper
,
M.
, and
Lieuwen
,
T.
,
2012
, “
Density Ratio Effects on Reacting Bluff-Body Flow Field Characteristics
,”
J. Fluid Mech.
,
706
, pp.
219
250
.10.1017/jfm.2012.248
39.
Menon
,
S.
,
2005
, “
Acoustic-Vortex-Flame Interactions in Gas Turbines
,”
Combustion Instabilities in Gas Turbine Engines Operational Experience, Fundamental Mechanisms, and Modeling
,
Progress in Astronautics Aeronautics AIAA
, Vol.
210
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, pp.
277
314
.10.2514/5.9781600866807.0277.0314
40.
Patel
,
N.
, and
Menon
,
S.
,
2008
, “
Simulation of Spray–Turbulence–Flame Interactions in a Lean Direct Injection Combustor
,”
Combust. Flame
,
153
(
1–2
), pp.
228
257
.10.1016/j.combustflame.2007.09.011
41.
Stöhr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2011
, “
Phase-Resolved Characterization of Vortex–Flame Interaction in a Turbulent Swirl Flame
,”
Exp. Fluids
,
51
(
4
), pp.
1153
1167
.10.1007/s00348-011-1134-y
42.
Ek
,
H.
,
Chterev
,
I.
,
Rock
,
N.
,
Emerson
,
B.
,
Seitzman
,
J.
,
Lieuwen
,
T.
,
Jiang
,
N.
, and
Proscia
,
W.
,
2018
, “
Feature Extraction From Time Resolved Reacting Flow Data Sets
,”
ASME
Paper No. GT2018-77051. 10.1115/GT2018-77051
43.
Rukes
,
L.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2017
, “
Transient Evolution of the Global Mode in Turbulent Swirling Jets: Experiments and Modal Stability Analysis
,”
Eur. J. Mech.-B/Fluids
,
65
, pp.
98
106
.10.1016/j.euromechflu.2017.02.010
You do not currently have access to this content.