Abstract

When operating at high speed, aeroengines mounted on the aircrafts also perform complicated maneuvering flights along with the aircrafts. The engine rotor systems will undergo forced motions excited by base movements and mass unbalance, which may lead to severe vibrations. Squeeze film damper (SFD) is generally used for vibration damping in aeroengine, but it also introduces structural nonlinearity like bistable jump. Moreover, the reliability of SFD is also affected by base excitations. Therefore, it is necessary to investigate the nonlinear dynamic behavior of rotor-SFD-support system excited by base motions. Taking a muti-disk rotor shaft supported by two SFDs with squirrel cages as the research object to simulate a gas generator in a turboshaft engine, the steady-state responses of the rotor system were calculated by multidimensional harmonic balance combined with alternating frequency/time domain method (MHB-AFT). The effects of base harmonic rotations and mass unbalance on steady-state responses of rotor system were investigated. The results indicate that the time-varying parametric excitations of base motions have strong effects on amplitude–frequency response of transverse displacement of rotor system. The critical speeds and resonant amplitudes of responses change with the magnitude and frequency of several base harmonic rotations. The variation of the frequency of base harmonic motion has the most significant impact on the amplitude–frequency response of transverse displacement of rotor system. The increase of base harmonic frequency will lead to multiple local peaks in the response curves, especially in the case of base harmonic rolling motion. In addition, the combination of base harmonic rotation around pitching and yawing axes results in significantly different response characteristics. Therefore, the influence of base harmonic motions should be considered during the structural design and damping optimization of SFDs.

References

1.
Lin
,
F.
, and
Meng
,
G.
,
2003
, “
Study on the Dynamics of a Rotor in a Maneuvering Aircraft
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
324
327
.10.1115/1.1576422
2.
Duchemin
,
M.
,
Berlioz
,
A.
, and
Ferraris
,
G.
,
2006
, “
Dynamic Behavior and Stability of a Rotor Under Base Excitation
,”
ASME J. Vib. Acoust.
,
128
(
5
), pp.
576
585
.10.1115/1.2202159
3.
Lei
,
H.
, and
Yushu
,
C.
,
2016
, “
Dynamical Simulation and Load Control of a Jeffcott Rotor System in Herbst Maneuvering Flight
,”
J. Vib. Control
,
22
(
2
), pp.
412
425
.10.1177/1077546314533138
4.
Hou
,
L.
,
Chen
,
Y.
, and
Cao
,
Q.
,
2014
, “
Nonlinear Vibration Phenomenon of an Aircraft Rub-Impact Rotor System Due to Hovering Flight
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
1
), pp.
286
297
.10.1016/j.cnsns.2013.06.023
5.
Hou
,
L.
,
Chen
,
Y.
,
Cao
,
Q.
, and
Lu
,
Z.
,
2016
, “
Nonlinear Vibration Analysis of a Cracked Rotor-Ball Bearing System During Flight Maneuvers
,”
Mech. Mach. Theory
,
105
, pp.
515
528
.10.1016/j.mechmachtheory.2016.07.024
6.
Wang
,
R.
,
Guo
,
X.
, and
Wang
,
Y.
,
2016
, “
Nonlinear Analysis of Rotor System Supported by Oil Lubricated Bearings Subjected to Base Movements
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
4
), pp.
543
558
.10.1177/0954406215578704
7.
Hou
,
L.
,
Chen
,
Y.
,
Fu
,
Y.
, and
Li
,
Z.
,
2016
, “
Nonlinear Response and Bifurcation Analysis of a Duffing Type Rotor Model Under Sine Maneuver Load
,”
Int. J. Non-Linear Mech.
,
78
, pp.
133
141
.10.1016/j.ijnonlinmec.2014.12.012
8.
Ge
,
Z. M.
, and
Chen
,
H. H.
,
1996
, “
Bifurcations and Chaos in a Rate Gyro With Harmonic Excitation
,”
J. Sound Vib.
,
194
(
1
), pp.
107
117
.10.1006/jsvi.1996.0348
9.
Driot
,
N.
,
Lamarque
,
C. H.
, and
Berlioz
,
A.
,
2006
, “
Theoretical and Experimental Analysis of a Base-Excited Rotor
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
257
263
.10.1115/1.2209648
10.
Chen
,
H.
,
Lei
,
H.
,
Chen
,
Y.
, and
Rui
,
Y.
,
2017
, “
Dynamic Characteristics of Flexible Rotor With Squeeze Film Damper Excited by Two Frequencies
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2463
2481
.10.1007/s11071-016-3204-4
11.
Das
,
A. S.
,
Nighil
,
M. C.
,
Dutt
,
J. K.
, and
Irretier
,
H.
,
2008
, “
Vibration Control and Stability Analysis of Rotor-Shaft System With Electromagnetic Exciters
,”
Mechanism Mach. Theory
,
43
(
10
), pp.
1295
1316
.10.1016/j.mechmachtheory.2007.10.007
12.
Dakel
,
M.
,
Baguet
,
S.
, and
Dufour
,
R.
,
2012
, “
Dynamic Analysis of a Harmonically Excited on-Board Rotor-Bearing System
,”
10th International Conference on Vibrations in Rotating Machinery
, London, UK, Sept. 11–13, pp.
57
67
.10.1533/9780857094537.2.57
13.
Dakel
,
M.
,
Baguet
,
S.
, and
Dufour
,
R.
,
2014
, “
Steady-State Dynamic Behavior of an on-Board Rotor Under Combined Base Motions
,”
J. Vib. Control
,
20
(
15
), pp.
2254
2287
.10.1177/1077546313483791
14.
Dakel
,
M.
,
Baguet
,
S.
, and
Dufour
,
R.
,
2014
, “
Nonlinear Dynamics of a Support-Excited Flexible Rotor With Hydrodynamic Journal Bearings
,”
J. Sound Vib.
,
333
(
10
), pp.
2774
2799
.10.1016/j.jsv.2013.12.021
15.
Briend
,
Y.
,
Dakel
,
M.
,
Chatelet
,
E.
,
Andrianoely
,
M.-A.
,
Dufour
,
R.
, and
Baudin
,
S.
,
2020
, “
Effect of Multi-Frequency Parametric Excitations on the Dynamics of on-Board Rotor-Bearing Systems
,”
Mech. Mach. Theory
,
145
, p.
103660
.10.1016/j.mechmachtheory.2019.103660
16.
Chen
,
X.
,
Gan
,
X.
,
Jiang
,
S.
, and
Ren
,
G.
, “
Dynamic Characteristics of a Squeeze Film Damped Rotor System Considering Instantaneous Static Eccentricity in Maneuvering Flight
,”
ASME
Paper No. GT2020-14251.10.1115/GT2020-14251
17.
Peng
,
Z.
,
G.-H
,
L.
, and
Fei
,
W. A. N. G.
,
2018
, “
Study on Finite Element Modeling of Rotor Under Maneuvering Turning Condition
,”
Aeroengine
,
44
(
2
), pp.
1672
3147
.
18.
Soni
,
T.
,
Das
,
A. S.
, and
Dutt
,
J. K.
,
2020
, “
Active Vibration Control of Ship Mounted Flexible Rotor-Shaft-Bearing System During Seakeeping
,”
J. Sound Vib.
,
467
, p.
115046
.10.1016/j.jsv.2019.115046
19.
Soni
,
T.
,
Dutt
,
J. K.
, and
Das
,
A. S.
,
2020
, “
Parametric Stability Analysis of Active Magnetic Bearing Supported Rotor System With a Novel Control Law Subject to Periodic Base Motion
,”
IEEE Trans. Ind. Electron.
,
67
(
2
), pp.
1160
1170
.10.1109/TIE.2019.2898604
20.
El-Saeidy
,
F. M. A.
, and
Sticher
,
F.
,
2010
, “
Dynamics of a Rigid Rotor Linear/Nonlinear Bearings System Subject to Rotating Unbalance and Base Excitations
,”
J. Vib. Control
,
16
(
3
), pp.
403
438
.10.1177/1077546309103565
21.
Chen
,
L.
,
Wang
,
J.
,
Han
,
Q.
, and
Chu
,
F.
,
2017
, “
Nonlinear Dynamic Modeling of a Simple Flexible Rotor System Subjected to Time-Variable Base Motions
,”
J. Sound Vib.
,
404
, pp.
58
83
.10.1016/j.jsv.2017.05.032
22.
Han
,
Q.
, and
Chu
,
F.
,
2013
, “
Dynamic Response of Cracked Rotor-Bearing System Under Time-Dependent Base Movements
,”
J. Sound Vib.
,
332
(
25
), pp.
6847
6870
.10.1016/j.jsv.2013.07.025
23.
Han
,
Q.
, and
Chu
,
F.
,
2014
, “
Dynamic Behaviors of a Geared Rotor System Under Time-Periodic Base Angular Motions
,”
Mech. Mach. Theory
,
78
, pp.
1
14
.10.1016/j.mechmachtheory.2014.02.016
24.
Han
,
Q.
, and
Chu
,
F.
,
2015
, “
Parametric Instability of Flexible Rotor-Bearing System Under Time-Periodic Base Angular Motions
,”
Appl. Math. Modell.
,
39
(
15
), pp.
4511
4522
.10.1016/j.apm.2014.10.064
25.
Krack
,
M.
, and
Gross
,
J.
,
2019
, “
Harmonic Balance for Nonlinear Vibration Problems
,”
Mathematical Engineering
, Springer, Cham, Switzerland.10.1007/978-3-030-14023-6
26.
Didier
,
J.
,
Sinou
,
J. J.
, and
Faverjon
,
B.
,
2012
, “
Multi-Dimensional Harmonic Balance With Uncertainties Applied to Rotor Dynamics
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061003
.10.1115/1.4006645
27.
Chen
,
X.
,
Gan
,
X.
, and
Ren
,
G.
,
2020
, “
Nonlinear Responses and Bifurcations of a Rotor-Bearing System Supported by Squeeze-Film Damper With Retainer Spring Subjected to Base Excitations
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2143
2177
.10.1007/s11071-020-06052-0
You do not currently have access to this content.