Abstract

Researches have shown that the use of a continuous detonation afterburner can improve the propulsion performance of aero engine. However, backpropagation pressure waves (BPW) generated by the pressure gain of detonation will affect the internal flow and performance of turbine. This article simulates BPW through a custom function, and investigates the effects of BPW amplitude, rotation frequency, and propagation mode on turbine performance through three-dimensional simulation. The results show that as the pressure amplitude of the BPW increases, the pressure oscillation at each section of the turbine increases and a local subcritical flow state will appear, leading to the decrease of turbine flowrate and turbine power, as well as an intensification of instantaneous turbine power fluctuations. As the rotation frequency of the BPW increases, the pressure oscillation at each section of the turbine gradually decreases. The flowrate and power of the turbine do not change much, but turbine efficiency gradually decreases. Compared to the aligned mode, the turbine performs better under the influence of BPW in misaligned mode. Compared to the single-wave mode, the fluctuation of transient turbine power is lower under the influence of BPW in the multiwave mode excluding collision mode. Finally, the constraints of equal flowrate region and equal turbine power line on the peak-to-peak value of the BPW were analyzed when the joint operation of the turbine and compressor was not affected. The rotation frequency and mode of BPW will affect the flowrate region and power line.

References

1.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
, “
Thermodynamic Cycle Analysis of Pulse Detonation Engines
,”
J. Propul. Power
,
18
(
1
), pp.
68
76
.10.2514/2.5899
2.
Qiu
,
H.
,
Xiong
,
C.
, and
Zheng
,
L. X.
,
2016
, “
Experimental Investigation of an Airbreathing Pulse Detonation Turbine Prototype Engine
,”
Appl. Therm. Eng.
,
104
, pp.
596
602
.10.1016/j.applthermaleng.2016.05.077
3.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
4.
Qiu
,
H.
,
Chen
,
Y. B.
,
Xiong
,
C.
, and
Gai
,
J. C.
,
2022
, “
Thermal Cycle and Propulsive Performance of Turbine Engine With Continuous Detonation Afterburner
,”
J. Propul. Technol.
,
43
(
7
), pp.
299
307 (in Chinese
).
5.
Frolov
,
S. M.
,
Ivanov
,
V. S.
,
Shamshin
,
I. O.
,
Aksenov
,
V. S.
,
Vovk
,
M. Y.
,
Mokrynskij
,
I. V.
,
Bruskov
,
V. A.
,
Igonkin
,
D. V.
,
Moskvitin
,
S. N.
, et al.,
2020
, “
A Detonation Afterburner
,”
Dokl. Phys.
,
65
(
1
), pp.
36
39
.10.1134/S1028335820010061
6.
Qiu
,
H.
,
Wang
,
X.
,
Li
,
Y. G.
,
He
,
Y. Q.
, and
Xiong
,
C.
,
2024
, “
Numerical Investigation on the Working Characteristics of Continuous Detonation Afterburner Combined With Turbine
,”
Appl. Therm. Eng.
,
247
, p.
123119
.10.1016/j.applthermaleng.2024.123119
7.
Ma
,
J. Z.
,
Luan
,
M. Y.
,
Xia
,
Z. J.
,
Wang
,
J. P.
,
Zhang
,
S. J.
,
Yao
,
S. B.
, and
Wang
,
B.
,
2020
, “
Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines
,”
AIAA J.
,
58
(
12
), pp.
4976
5035
.10.2514/1.J058157
8.
Teng
,
H. H.
,
Zhou
,
L.
,
Yang
,
P. F.
, and
Jiang
,
Z. L.
,
2020
, “
Numerical Investigation of Wavelet Features in Rotating Detonations With a Two-Step Induction-Reaction Model
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
4991
5001
.10.1016/j.ijhydene.2019.12.063
9.
Yao
,
K. P.
,
Yang
,
P. F.
,
Teng
,
H. H.
,
Chen
,
Z.
, and
Wang
,
C.
,
2022
, “
Effects of Injection Parameters on Propagation Patterns of Hydrogen-Fueled Rotating Detonation Waves
,”
Int. J. Hydrogen Energy
,
47
(
91
), pp.
38811
38822
.10.1016/j.ijhydene.2022.09.051
10.
Wang
,
G. Y.
,
Liu
,
W. D.
,
Liu
,
S. J.
,
Zhang
,
H. L.
,
Peng
,
H. Y.
, and
Zhou
,
Y. F.
,
2021
, “
Experimental Verification of Cylindrical Air-Breathing Continuous Rotating Detonation Engine Fueled by Non-Premixed Ethylene
,”
Acta Astronaut.
,
189
, pp.
722
732
.10.1016/j.actaastro.2021.09.009
11.
Bai
,
Q. D.
,
Han
,
J. X.
,
Zhang
,
S. J.
, and
Weng
,
C. S.
,
2023
, “
Experimental Study on the Auto-Initiation of Rotating Detonation With High-Temperature Hydrogen-Rich Gas
,”
Phys. Fluids
,
35
(
4
), p.
045121
.10.1063/5.0144322
12.
Ma
,
Y.
,
Zhou
,
S. B.
,
Ma
,
H.
,
Ge
,
G. Y.
,
Yu
,
D. H.
,
Zou
,
G.
,
Liang
,
Z. T.
, and
Zhang
,
T. F.
,
2022
, “
Experimental Investigation on Propagation Characteristics of Liquid-Fuel/Preheated-Air Rotating Detonation Wave
,”
Int. J. Hydrogen Energy
,
47
(
57
), pp.
24080
24092
.10.1016/j.ijhydene.2022.05.186
13.
Zhong
,
Y. P.
,
Wu
,
Y.
,
Jin
,
D.
,
Chen
,
X.
,
Yang
,
X. K.
, and
Wang
,
S. L.
,
2019
, “
Effect of Channel and Oxidizer Injection Slot Width on the Rotating Detonation Fueled by Pre-Combustion Cracked Kerosene
,”
Acta Astronaut.
,
165
, pp.
365
372
.10.1016/j.actaastro.2019.09.034
14.
Yang
,
X. K.
,
Wu
,
Y.
,
Zhong
,
Y. P.
,
Song
,
F. L.
,
Xu
,
S. D.
,
Jin
,
D.
,
Chen
,
X.
,
Wang
,
S. L.
, and
Zhou
,
J. P.
,
2021
, “
Investigation of Rotating Detonation Fueled by Pre-Combustion Cracked Kerosene Under Different Channel Widths
,”
Proc. Inst. Mech. Eng. G-J. AER
,
235
(
9
), pp.
1023
1035
.10.1177/0954410020965773
15.
Han
,
J.
,
Bai
,
Q. D.
,
Zhang
,
S. J.
, and
Weng
,
C. S.
,
2022
, “
Experimental Study on Propagation Mode of Rotating Detonation Wave With Cracked Kerosene Gas and Ambient Temperature Air
,”
Phys. Fluids
,
34
(
7
), p.
075127
.10.1063/5.0101801
16.
Bykovskii
,
F. A.
,
Mitrofanov
,
V. V.
, and
Vedernikov
,
E. F.
,
1997
, “
Continuous Detonation Combustion of Fuel-Air Mixtures
,”
Combust., Explos. Shock Waves
,
33
(
3
), pp.
344
353
.10.1007/BF02671875
17.
Anand
,
V.
,
St George
,
A.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2016
, “
Analysis of Air Inlet and Fuel Plenum Behavior in a Rotating Detonation Combustor
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
408
416
.10.1016/j.expthermflusci.2015.10.007
18.
Rankin
,
B. A.
,
Fotia
,
M. L.
,
Paxson
,
D. E.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2015
, “
Experimental and Numerical Evaluation of Pressure Gain Combustion in a Rotating Detonation Engine
,”
AIAA
Paper No. 2015-0877.10.2514/6.2015-0877
19.
Bedick
,
C.
,
Sisler
,
A.
,
Ferguson
,
D.
, and
Strakey
,
P.
,
2017
, “
Development of a Lab-Scale Experimental Testing Platform for Rotating Detonation Engine Inlets
,”
AIAA
Paper No. 2017-0785.10.2514/6.2017-0785
20.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2012
, “
Feedback Into Mixture Plenums in Rotating Detonation Engines
,”
AIAA
Paper No. 2012-0617.10.2514/6.2012-0617
21.
Sisler
,
A. T.
,
2016
, “
Experimental Investigation for Characterizing and Improving Inlet Designs in Rotating Detonation Engines
,”
M.S. dissertation
,
West Virginia University
,
Morgantown, WV
.https://researchrepository.wvu.edu/etd/6650/
22.
Yang
,
X. K.
,
Song
,
F. L.
,
Wu
,
Y.
,
Guo
,
S. G.
,
Xu
,
S. D.
,
Zhou
,
J. P.
, and
Liu
,
H.
,
2022
, “
Suppression of Pressure Feedback of the Rotating Detonation Combustor by a Tesla Inlet Configuration
,”
Appl. Therm. Eng.
,
216
, p.
119123
.10.1016/j.applthermaleng.2022.119123
23.
Yang
,
X. K.
,
Song
,
F. L.
,
Wu
,
Y.
,
Zhou
,
J. P.
,
Chen
,
X.
,
Kang
,
J. H.
, and
Ma
,
Y. C.
,
2023
, “
Experimental Study on Suppressing Pressure Feedback and Combustion Product Backflow of the Rotating Detonation Engine
,”
Aerosp. Sci. Technol.
,
141
, p.
108523
.10.1016/j.ast.2023.108523
24.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2013
, “
On Reducing Feedback Pressure in Rotating Detonation Engines
,”
AIAA
Paper No. 2013-1178.10.2514/6.2013-1178
25.
Ji
,
Z. F.
,
Zhang
,
B.
,
Zhang
,
H. Q.
,
Wang
,
B.
, and
Wang
,
C.
,
2022
, “
Reduction of Feedback Pressure Perturbation for Rotating Detonation Combustors
,”
Aerosp. Sci. Technol.
,
126
, p.
107635
.10.1016/j.ast.2022.107635
26.
Frolov
,
S. M.
,
Dubrovskii
,
A. V.
, and
Ivanov
,
V. S.
,
2016
, “
Three-Dimensional Numerical Simulation of a Continuously Rotating Detonation in the Annular Combustion Chamber With a Wide Gap and Separate Delivery of Fuel and Oxidizer
,”
Prog. Propul. Phys.
,
8
, pp.
375
388
.10.1051/eucass/201608375
27.
Braun
,
J.
,
Liu
,
Z.
,
Cuadrado
,
D.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Saavedra
,
J.
,
Athmanathan
,
V.
, and
Meyer
,
T. R.
,
2019
, “
Characterization of an Integrated Nozzle and Supersonic Axial Turbine With a Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-3873.10.2514/6.2019-3873
28.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2021
, “
Rotating Detonation Wave Direction and the Influence of Nozzle Guide Vane Inclination
,”
AIAA J.
,
59
(
12
), pp.
5276
5287
.10.2514/1.J060594
29.
Su
,
L. J.
,
Wen
,
F. B.
,
Wan
,
C. X.
,
Han
,
J. J.
,
Wang
,
Y.
, and
Wang
,
S. T.
,
2023
, “
Numerical Study on the Integration of Supersonic Turbine Guide Vanes and Three-Dimensional Hydrogen/Air Rotating Detonation Combustor
,”
Phys. Fluids
,
35
(
6
), p.
066130
.10.1063/5.0151679
30.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
31.
Zhao
,
T.
,
Zhu
,
J. F.
,
Ling
,
M. T.
,
Yan
,
C.
, and
You
,
Y. C.
,
2023
, “
Coupling Characteristic Analysis and Propagation Direction Control in Hydrogen–Air Rotating Detonation Combustor With Turbine
,”
Int. J. Hydrogen Energy
,
48
(
58
), pp.
22250
22263
.10.1016/j.ijhydene.2023.03.103
32.
Haas
,
J. E.
, and
Boyle
,
R. J.
,
1984
, “
Analytical and Experimental Investigation of Stator Endwall Contouring in a Small Axial-Flow Turbine: II-Stage Result
,” NASA Report No.
NASA 84-C-5
.https://ntrs.nasa.gov/api/citations/19840024318/downloads/19840024318.pdf
33.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031501
.10.1115/1.4040815
34.
Sousa
,
J.
,
Collado-Morata
,
E.
, and
Paniagua
,
G.
,
2022
, “
Design and Optimization of Supersonic Turbines for Detonation Combustors
,”
Chin. J. Aeronaut.
,
35
(
11
), pp.
33
44
.10.1016/j.cja.2022.04.003
35.
Liu
,
J. Y.
,
Wang
,
Z. W.
,
Qin
,
W. F.
,
Li
,
J. L.
,
Zhang
,
Z. X.
, and
Huang
,
J. J.
,
2023
, “
Effects of Detonation Initial Conditions on Performance of Pulse Detonation Chamber-Axial Turbine Combined System
,”
Energy
,
278
, p.
127765
.10.1016/j.energy.2023.127765
36.
Zhang
,
C. M.
,
Lin
,
Z. Y.
, and
Dong
,
T. Y.
,
2022
, “
Numerical Study on the Interaction Characterization of Rotating Detonation Wave and Turbine Rotor Blades
,”
Int. J. Hydrogen Energy
,
47
(
10
), pp.
6898
6910
.10.1016/j.ijhydene.2021.12.043
37.
Suresh
,
A.
,
Hofer
,
D. C.
, and
Tangirala
,
V. E.
,
2012
, “
Turbine Efficiency for Unsteady, Periodic Flows
,”
ASME AMSE J. Turbomach.
,
134
(
3
), p.
034501
.10.1115/1.4003246
38.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
, p.
078001
.10.1115/1.2960953
39.
Liu
,
H.
,
Song
,
F. L.
,
Jin
,
D.
,
Xu
,
S. D.
, and
Yang
,
X. K.
,
2023
, “
Experimental Investigation on Spray and Detonation Initiation Characteristics of Premixed/Non-Premixed RDE
,”
Fuel
,
331
(
2
), p.
125949
.10.1016/j.fuel.2022.125949
You do not currently have access to this content.