Abstract

In an effort to increase the efficiency and performance of gas turbine power cycles, pressure gain combustion (PGC) has gained significant interest. Since rotating detonation combustors (RDC) can provide a quasi-steady mode of operation, research has been triggered to integrate RDC with power-generating gas turbines. However, the presence of subsonic and supersonic flow fields which are generated due to the shock waves that stem from the detonation wave front and the highly nonuniform temperature and velocity profiles may cause a depreciation in the turbine performance. The current study seeks to investigate the challenges of integrating the RDC with nozzle guide vanes (NGV) of an industrial, can-annular gas turbine and attempts to understand the major contributors that impact efficiency and identify the key areas of optimization that need to be considered for maximizing performance. The RDC was integrated with the NGVs through a nonoptimized straight duct-type geometry with a diffuser cone. 3-Dimensional Numerical analyses were performed to investigate sources of total pressure loss and to understand the unsteady effects of RDC which contribute toward the deterioration of performance. The entropy generation at different regions of interest was calculated to identify the major irreversibility's in the system. Also, total pressure and temperature distribution along the radial direction at the exit of the transitional duct is presented.

References

1.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
2.
Bigler
,
B. R.
,
Paulson
,
E. J.
, and
Hargus
,
W. A.
,
2017
, “
Idealized Efficiency Calculations for Rotating Detonation Engine Rocket Applications
,”
AIAA
Paper No. 2017-5011.10.2514/6.2017-5011
3.
Kailasanath
,
K.
,
2000
, “
Review of Propulsion Applications of Detonation Waves
,”
AIAA J.
,
38
(
9
), pp.
1698
1708
.10.2514/2.1156
4.
Andriani
,
R.
,
Ingenito
,
A.
, and
Agresta
,
A.
,
2017
, “
Thermal Analysis and Performance of a Pressure Gain Combustion System
,” Proceedings of the 7th European Conference for Aeronautics and Space Sciences (
EUCASS
), Milan, Italy, July 3–6, pp.
3
6
.10.13009/EUCASS2017-635
5.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2006
, “
Continuous Spin Detonations
,”
J. Propul. Power
,
22
(
6
), pp.
1204
1216
.10.2514/1.17656
6.
Nordeen
,
C. A.
,
Schwer
,
D.
,
Schauer
,
F.
,
Hoke
,
J.
,
Barber
,
T.
, and
Cetegen
,
B.
,
2014
, “
Thermodynamic Model of a Rotating Detonation Engine
,”
Combust., Explos., Shock Waves
,
50
(
5
), pp.
568
577
.10.1134/S0010508214050128
7.
Tang
,
X.-M.
,
Wang
,
J.-P.
, and
Shao
,
Y.-T.
,
2015
, “
Three-Dimensional Numerical Investigations of the Rotating Detonation Engine With a Hollow Combustor
,”
Combust. Flame
,
162
(
4
), pp.
997
1008
.10.1016/j.combustflame.2014.09.023
8.
Rankin
,
B. A.
,
Fotia
,
M.
,
Paxson
,
D. E.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2015
, “
Experimental and Numerical Evaluation of Pressure Gain Combustion in a Rotating Detonation Engine
,”
AIAA
Paper No. 2015-0877.10.2514/6.2015-0877
9.
Tellefsen
,
J.
,
King
,
P.
,
Schauer
,
F.
, and
Hoke
,
J.
,
2012
, “
Analysis of an RDE With Convergent Nozzle in Preparation for Turbine Integration
,”
AIAA
Paper No. 2012-0773.10.2514/6.2012-0773
10.
Braun
,
J.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Liu
,
Z.
,
Saavedra
,
J.
,
Athmanathan
,
V.
, and
Meyer
,
T.
, “
Characterization of an Integrated Nozzle and Supersonic Axial Turbine With a Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-3873.10.2514/6.2019-3873
11.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Thermal Power Plant Upgrade Via a Rotating Detonation Combustor and Retrofitted Turbine With Optimized Endwalls
,”
Int. J. Mech. Sci.
,
188
, p.
105918
.10.1016/j.ijmecsci.2020.105918
12.
Zeldovich
,
Y. B.
,
2006
, “
To the Question of Energy Use of Detonation Combustion
,”
J. Propul. Power
,
22
(
3
), pp.
588
592
.10.2514/1.22705
13.
Nicholls
,
J. A.
,
Wilkinson
,
H. R.
, and
Morrison
,
R. B.
,
1957
, “
Intermittent Detonation as a Thrust-Producing Mechanism
,”
J. Jet Propul.
,
27
(
5
), pp.
534
541
.10.2514/8.12851
14.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
15.
Kailasanath
,
K.
,
2011
, “
The Rotating Detonation-Wave Engine Concept: A Brief Status Report
,”
AIAA
Paper No. 2011-580.10.2514/6.2011-580
16.
Voitsekhovskii
,
B. V.
,
1960
, “
Stationary Spin Detonation
,”
Sov. J. Appl. Mech. Tech. Phys.
,
3
(
6
), pp.
157
164
.
17.
Nlcholls
,
J. A.
,
Cullen
,
R. E.
, and
Ragland
,
K. W.
,
1966
, “
Feasibility Studies of a Rotating Detonation Wave Rocket Motor
,”
J. Spacecr. Rockets
,
3
(
6
), pp.
893
898
.10.2514/3.28557
18.
Mikhalkin
,
V. N.
,
1996
, “
Thermodynamic Calculation of Detonation in Poorly Mixed Gas Mixtures
,”
Combust., Explos. Shock Waves
,
32
(
1
), pp.
57
60
.10.1007/BF01992192
19.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2013
, “
Fluid Dynamics of Rotating Detonation Engines With Hydrogen and Hydrocarbon Fuels
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
1991
1998
.10.1016/j.proci.2012.05.046
20.
Nordeen
,
C.
,
Schwer
,
D.
,
Schauer
,
F.
,
Hoke
,
J.
,
Barber
,
T.
, and
Cetegen
,
B.
,
2013
, “
Divergence and Mixing in a Rotating Detonation Engine
,”
AIAA
Paper No. 2013-1175.10.2514/6.2013-1175
21.
Nordeen
,
C. A.
,
Schwer
,
D.
,
Schauer
,
F.
,
Hoke
,
J.
,
Barber
,
T.
, and
Cetegen
,
B. M.
,
2016
, “
Role of Inlet Reactant Mixedness on the Thermodynamic Performance of a Rotating Detonation Engine
,”
Shock Waves
,
26
(
4
), pp.
417
428
.10.1007/s00193-015-0570-7
22.
Sun
,
J.
,
Zhou
,
J.
,
Liu
,
S.
, and
Lin
,
Z.
,
2018
, “
Numerical Investigation of a Rotating Detonation Engine Under Premixed/Non-Premixed Conditions
,”
Acta Astronaut.
,
152
, pp.
630
638
.10.1016/j.actaastro.2018.09.012
23.
Lietz
,
C.
,
Desai
,
Y.
,
Munipalli
,
R.
,
Schumaker
,
S. A.
, and
Sankaran
,
V.
,
2019
, “
Flowfield Analysis of a 3D Simulation of a Rotating Detonation Rocket Engine
,”
AIAA
Paper No. 2019-1009.10.2514/6.2019-1009
24.
Bedick
,
C.
,
Strakey
,
P.
, and
Ferguson
,
D. H.
,
2021
, “
Parametric Evaluation of RDE Inlet Performance Using a Reduced-Order Model
,”
AIAA
Paper No. 2021-3649.10.2514/6.2021-3649
25.
Paxson
,
D. E.
,
Fotia
,
M.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2015
, “
Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine
,”
AIAA
Paper No. 2015-1101.10.2514/6.2015-1101
26.
Subramanian
,
S.
, and
Meadows
,
J.
,
2020
, “
Novel Approach for Computational Modeling of a Non-Premixed Rotating Detonation Engine
,”
J. Propul. Power
,
36
(
4
), pp.
617
631
.10.2514/1.B37719
27.
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2017
, “
Unsteady Performance of Rotating Detonation Engines With Different Exhaust Nozzles
,”
J. Propul. Power
,
33
(
1
), pp.
121
130
.10.2514/1.B36164
28.
Liu
,
X.-Y.
,
Cheng
,
M.
,
Zhang
,
Y.-Z.
, and
Wang
,
J.-P.
,
2022
, “
Design and Optimization of Aerospike Nozzle for Rotating Detonation Engine
,”
Aerosp. Sci. Technol.
,
120
, p.
107300
.10.1016/j.ast.2021.107300
29.
DeBarmore
,
N.
,
King
,
P.
,
Schauer
,
F.
, and
Hoke
,
J.
,
2013
, “
Nozzle Guide Vane Integration Into Rotating Detonation Engine
,”
AIAA
Paper No. 2013–1030.10.2514/6.2013-1030
30.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
31.
Bach
,
E.
,
Stathopoulos
,
P.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2020
, “
Performance Analysis of a Rotating Detonation Combustor Based on Stagnation Pressure Measurements
,”
Combust. Flame
,
217
, pp.
21
36
.10.1016/j.combustflame.2020.03.017
32.
Zhou
,
S.
,
Ma
,
H.
,
Li
,
S.
,
Liu
,
D.
,
Yan
,
Y.
, and
Zhou
,
C.
,
2017
, “
Effects of a Turbine Guide Vane on Hydrogen-Air Rotating Detonation Wave Propagation Characteristics
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20297
20305
.10.1016/j.ijhydene.2017.06.115
33.
Zhou
,
S.
,
Ma
,
H.
,
Ma
,
Y.
,
Zhou
,
C.
, and
Hu
,
N.
,
2021
, “
Experimental Investigation on Detonation Wave Propagation Mode in the Start-Up Process of Rotating Detonation Turbine Engine
,”
Aerosp. Sci. Technol.
,
111
, p.
106559
.10.1016/j.ast.2021.106559
34.
Wu
,
Y.
,
Weng
,
C.
,
Zheng
,
Q.
,
Wei
,
W.
, and
Bai
,
Q.
,
2021
, “
Experimental Research on the Performance of a Rotating Detonation Combustor With a Turbine Guide Vane
,”
Energy
,
218
, p.
119580
.10.1016/j.energy.2020.119580
35.
Wei
,
W.-L.
,
Wu
,
Y.-W.
,
Weng
,
C.-S.
, and
Zheng
,
Q.
,
2021
, “
Influence of Propagation Direction on Operation Performance of Rotating Detonation Combustor With Turbine Guide Vane
,”
Defence Technol.
,
17
(
5
), pp.
1617
1624
.10.1016/j.dt.2020.08.009
36.
Lynch
,
S. P.
, and
Boggio
,
M.
,
2022
, “
Computational Analysis of Rotating Detonation Engine Exhaust Interacting With a Turbine Vane
,”
AIAA
Paper No. 2022-1720.10.2514/6.2022-1720
37.
Ji
,
Z.
,
Zhang
,
H.
, and
Wang
,
B.
,
2019
, “
Performance Analysis of Dual-Duct Rotating Detonation Aero-Turbine Engine
,”
Aerosp. Sci. Technol.
,
92
, pp.
806
819
.10.1016/j.ast.2019.07.011
38.
Huff
,
R. T.
,
Boller
,
S. A.
,
Polanka
,
M. D.
,
Schauer
,
F. R.
,
Fotia
,
M. L.
, and
Hoke
,
J. L.
,
2021
, “
Radial Rotating Detonation Engine Driven Bleed Air Turbine
,”
J. Propul. Power
,
37
(
2
), pp.
252
260
.10.2514/1.B37849
39.
Henderson
,
R. E.
, and
Blazowski
,
W. S.
,
1989
,
Turbopropulsion Combustion Technology
,
Aircraft Propulsion Systems Technology and Design
, Washington, DC.
40.
Brandt
,
D. E.
, and
Wesorick
,
R.
,
1994
, “
GE Gas Turbine Design Philosophy
,” GER-3434, General Electric, Boston, MA.
41.
Rankin
,
B. A.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2015
, “
Imaging of OH* Chemiluminescence in an Optically Accessible Nonpremixed Rotating Detonation Engine
,”
AIAA
Paper No. 2015-1604.10.2514/6.2015-1604
42.
Jeon
,
S.
,
Son
,
C.
, and
Kim
,
J.
,
2021
, “
Influence of Swirl Clocking on the Performance of Turbine Stage With Three-Dimensional Nozzle Guide Vane
,”
Energies
,
14
(
17
), p.
5503
.10.3390/en14175503
43.
Hishida
,
M.
,
Fujiwara
,
T.
, and
Wolanski
,
P.
,
2009
, “
Fundamentals of Rotating Detonations
,”
Shock Waves
,
19
(
1
), pp.
1
10
.10.1007/s00193-008-0178-2
44.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
45.
Strakey
,
P.
,
Ferguson
,
D.
,
Sisler
,
A.
, and
Nix
,
A.
,
2016
, “
Computationally Quantifying Loss Mechanisms in a Rotating Detonation Engine
,”
AIAA
Paper No. 2016-0900.10.2514/6.2016-0900
46.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2021, “
GRI-Mech 3.0, 2000
,” accessed Oct. 10, 2021, http://www.me.berkeley.edu/gri_mech
47.
Pal
,
P.
,
Kumar
,
G.
,
Drennan
,
S.
,
Rankin
,
B.
, and
Som
,
S.
,
2019
, “
Multidimensional Numerical Simulations of Reacting Flow in a Non-Premixed Rotating Detonation Engine
,”
ASME
Paper No. GT2019-91931.10.1115/GT2019-91931
48.
Pudsey
,
A. S.
, and
Boyce
,
R. R.
,
2010
, “
Numerical Investigation of Transverse Jets Through Multiport Injector Arrays in a Supersonic Crossflow
,”
J. Propul. Power
,
26
(
6
), pp.
1225
1236
.10.2514/1.39603
49.
Driscoll
,
R.
,
George
,
A. S.
, and
Gutmark
,
E. J.
,
2016
, “
Numerical Investigation of Injection Within an Axisymmetric Rotating Detonation Engine
,”
Int. J. Hydrogen Energy
,
41
(
3
), pp.
2052
2063
.10.1016/j.ijhydene.2015.10.055
50.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
51.
Rankin
,
B. A.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2017
, “
Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine
,”
Combust. Flame
,
176
, pp.
12
22
.10.1016/j.combustflame.2016.09.020
52.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.10.1002/kin.20036
53.
Lawson
,
J.
, and
Shepherd
,
J.
,
2019
,
Shock and Detonation Toolbox Installation Instructions
,
California Institute of Technology
,
Pasadena, CA
.
54.
Raj
,
P.
, and
Meadows
,
J.
,
2023
, “
Numerical Analysis to Optimize and Study the Impact of Area Profiling on the Performance of a Rotating Detonation Engine
,”
ASME
Paper No. GT2023-102982.10.1115/GT2023-102982
55.
Semlitsch
,
B.
,
Hynes
,
T.
,
Langella
,
I.
,
Swaminathan
,
N.
, and
Dowling
,
A. P.
,
2019
, “
Entropy and Vorticity Wave Generation in Realistic Gas Turbine Combustors
,”
J. Propul. Power
,
35
(
4
), pp.
839
849
.10.2514/1.B37463
56.
Chen
,
Z.
,
Weng
,
Z.
, and
Mével
,
R.
,
2024
, “
Entropy and Nitrogen Oxides Production in Steady Detonation Wave Propagating in Hydrogen-Air Mixtures
,”
Int. J. Hydrogen Energy
,
51
, pp.
961
976
.10.1016/j.ijhydene.2023.06.343
You do not currently have access to this content.