Abstract

This work concerns the numerical modeling of geometric nonlinear vibrations of slender structures in rotation using an original reduced order model based on the use of dual modes along with the implicit condensation method. This approach is an improvement of the classical ICE method in the sense that the membrane stretching effect is taken into account in the dynamic resolution. The dynamics equations are first presented and the construction of the reduced order model (ROM) is then proposed. The second part of the paper deals with numerical applications using the finite element method, first for a three-dimensional cantilever beam, then for an Ultra-High Bypass Ratio (UHBR) fan blade subject to aerodynamic loads. In the applications considered, the proposed method predicts more accurately the geometrically nonlinear behavior than the ICE method.

References

1.
Nelson
,
R.
,
1976
, “
Simplified Calculation of Eigenvector Derivatives
,”
AIAA J.
,
14
(
9
), pp.
1201
1205
.10.2514/3.7211
2.
Slaats
,
P.
,
de Jongh
,
J.
, and
Sauren
,
A.
,
1995
, “
Model Reduction Tools for Nonlinear Structural Dynamics
,”
Comput. Struct.
,
54
(
6
), pp.
1155
1171
.10.1016/0045-7949(94)00389-K
3.
Kim
,
K.
,
Radu
,
A.
,
Wang
,
X.
, and
Mignolet
,
M.
,
2013
, “
Nonlinear Reduced Order Modeling of Isotropic and Functionally Graded Plates
,”
Int. J. Non-Linear Mech.
,
49
, pp.
100
110
.10.1016/j.ijnonlinmec.2012.07.008
4.
Mignolet
,
M.
,
Przekop
,
A.
,
Rizzi
,
S.
, and
Spottswood
,
S.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.10.1016/j.jsv.2012.10.017
5.
Wang
,
X. Q.
,
Khanna
,
V.
,
Kim
,
K.
, and
Mignolet
,
M.
,
2021
, “
Nonlinear Reduced-Order Modeling of Flat Cantilevered Structures: Identification Challenges and Remedies
,”
J. Aerosp. Eng.
,
34
(
6
), p.
04021085
.10.1061/(ASCE)AS.1943-5525.0001324
6.
Vizzaccaro
,
A.
,
Opreni
,
A.
,
Salles
,
L.
,
Frangi
,
A.
, and
Touzé
,
C.
,
2022
, “
High Order Direct Parametrisation of Invariant Manifolds for Model Order Reduction of Finite Element Structures: Application to Large Amplitude Vibrations and Uncovering of a Folding Point
,”
Nonlinear Dyn.
,
110
(
1
), pp.
525
571
.10.1007/s11071-022-07651-9
7.
Haller
,
G.
, and
Ponsioen
,
S.
,
2016
, “
Nonlinear Normal Modes and Spectral Submanifolds: Existence, Uniqueness and Use in Model Reduction
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1493
1534
.10.1007/s11071-016-2974-z
8.
Chaturantabut
,
S.
, and
Sorensen
,
D.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.10.1137/090766498
9.
Feeny
,
B.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.10.1006/jsvi.1997.1386
10.
Kerschen
,
G.
, and
Golinval
,
J.
,
2002
, “
Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition
,”
J. Sound Vib.
,
249
(
5
), pp.
849
865
.10.1006/jsvi.2001.3930
11.
Liang
,
Y.-C.
,
Lee
,
H.-P.
,
Lim
,
S.-P.
,
Lin
,
W.-Z.
,
Lee
,
K.-H.
, and
Wu
,
C.-G.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications - Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.10.1006/jsvi.2001.4041
12.
McEwan
,
M.
,
Wright
,
J.
,
Cooper
,
J.
, and
Leung
,
A.
,
2001
, “
A Combined Modal/Finite Element Analysis Technique for the Dynamic Response of a Non-Linear Beam to Harmonic Excitation
,”
J. Sound Vib.
,
243
(
4
), pp.
601
624
.10.1006/jsvi.2000.3434
13.
Hollkamp
,
J.
, and
Gordon
,
R.
,
2008
, “
Reduced-Order Models for Nonlinear Response Prediction: Implicit Condensation and Expansion
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1139
1153
.10.1016/j.jsv.2008.04.035
14.
Nicolaidou
,
E.
,
Hill
,
T.
, and
Neild
,
S.
,
2020
, “
Indirect Reduced-Order Modelling: Using Nonlinear Manifolds to Conserve Kinetic Energy
,”
Proc. R. Soc. A.
,
476
(
2243
), p. 20200589.10.1098/rspa.2020.0589
15.
Nicolaidou
,
E.
,
Hill
,
T.
, and
Neild
,
S.
,
2022
, “
Nonlinear Mapping of Non-Conservative Forces for Reduced-Order Modelling
,”
Proc. R. Soc. A
,
478
(
2268
), p. 20220522.10.1098/rspa.2022.0522
16.
Flament
,
T.
,
Deü
,
J.-F.
,
Placzek
,
A.
,
Balmaseda
,
M.
, and
Tran
,
D.-M.
,
2022
, “
Reduced-Order Model for Large Amplitude Vibrations of Flexible Structures Coupled With a Fluid Flow
,”
Proceedings of the 8th ECCOMAS Congress
, Oslo, Norway, June.https://hal.science/hal-03758918/document
17.
Thomas
,
O.
,
Sénéchal
,
A.
, and
Deü
,
J.-F.
,
2016
, “
Hardening/Softening Behavior and Reduced Order Modeling of Nonlinear Vibrations of Rotating Cantilever Beams
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1293
1318
.10.1007/s11071-016-2965-0
18.
Muravyov
,
A.
, and
Rizzi
,
S.
,
2003
, “
Determination of Nonlinear Stiffness With Application to Random Vibration of Geometrically Nonlinear Structures
,”
Comput. Struct.
,
81
(
15
), pp.
1513
1523
.10.1016/S0045-7949(03)00145-7
19.
Balmaseda
,
M.
,
Jacquet-Richardet
,
G.
,
Placzek
,
A.
, and
Tran
,
D.-M.
,
2020
, “
Reduced Order Models for Nonlinear Dynamic Analysis With Application to a Fan Blade
,”
ASME J. Eng. Gas Turbine Power
,
142
(
4
), p.
041002
.10.1115/1.4044805
20.
Vizzaccaro
,
A.
,
Givois
,
A.
,
Longobardi
,
P.
,
Shen
,
Y.
,
Deü
,
J.-F.
,
Salles
,
L.
,
Touzé
,
C.
, and
Thomas
,
O.
,
2020
, “
Non-Intrusive Reduced Order Modelling for the Dynamics of Geometrically Nonlinear Flat Structures Using Three-Dimensional Finite Elements
,”
Comput. Mech.
,
66
(
6
), pp.
1293
1319
.10.1007/s00466-020-01902-5
21.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.: Ser. B
,
58
(
1
), pp.
267
288
.10.1111/j.2517-6161.1996.tb02080.x
22.
Heib
,
S.
,
Plot
,
S.
, and
C
,
L.
,
2013
, “
The Onera Elsa CFD Software: Input Research and Feedback From Industry
,”
Mech. Ind., EDP Sci.
,
14
(
3
), pp.
159
174
.10.1051/meca/2013056
You do not currently have access to this content.