Abstract

A key element for the transition to sustainable energy lies in the transformation of the power plant fleet, which is dominated by fossil fuels, toward sustainable energy production from renewable energy sources. An increase in efficiency and reduction of exhaust gas emissions, especially the minimization of CO2 emissions, is possible through the use of new turbine materials, which can withstand higher temperature levels. Oxide ceramics are well known for their high stability in aggressive environments, low density, high melting point, high stiffness, and great creep resistance, but their brittleness has strongly limited their number of applications. Therefore, the implementation of fiber reinforcement using the three-dimensional (3D) braiding process shows great potential to increase the damage tolerance of ceramic matrix composites (CMC) and consequently the performance of thermal machines significantly. Currently, the impregnation of 3D braids for the reinforcement of ceramic composites poses a challenge due to the high packing density of the textiles. In order to enable a homogeneous impregnation of the fiber structures using highly viscous ceramic slurries, the CMC research group at RWTH Aachen University's Institute of Textile Technology (ITA) is investigating the combination of 3D braiding and pressure slip casting for an economical production of all-oxide CMCs. To increase the impregnation quality of dense textiles, this paper describes approaches to reduce the filter effect of braids. The results of an initial investigation into the functionalization of two-dimensional braided reinforcement structures by using support structures and flow aids are described. The effectiveness of the impregnation ability is assessed by evaluating the residual porosity of generated green compacts via μCT analysis.

References

1.
Lechner
,
C.
, and
Seume
,
J.
,
2019
,
Stationäre Gasturbinen
,
Springer Vieweg
,
Berlin, Heidelberg
.10.1007/978-3-662-56134-8
2.
Breeze
,
P.
,
2016
,
Gas-Turbine Power Generation
,
Academic Press
,
London, UK
.
3.
Roos
,
E.
,
Maile
,
K.
, and
Seidenfuß
,
M.
,
2022
,
Werkstoffkunde Für Ingenieure: Grundlagen, Anwendung, Prüfung
,
Springer Vieweg
,
Berlin, Heidelberg
.10.1007/978-3-662-64732-5
4.
Maier
,
H. J.
,
Niendorf
,
T.
, and
Bürgel
,
R.
,
2019
,
Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen Und -Beschichtungen
,
Springer Vieweg
,
Berlin, Heidelberg
.10.1007/978-3-658-25314-1
5.
Leyens
,
C.
,
Hausmann
,
J.
, and
Kumpfert
,
J.
,
2003
, “
Continuous Fiber Reinforced Titanium Matrix Composites: Fabrication, Properties, and Applications
,”
Adv. Eng. Mater.
,
5
(
6
), pp.
399
410
.10.1002/adem.200310093
6.
Bhatia
,
T.
,
Jarmon
,
D.
,
Shi
,
J.
,
Kearney
,
S.
,
Kojovic
,
A.
,
Hu
,
J.
, and
Prociv
,
A.
,
2010
, “
CMC Combustor Liner Demonstration in a Small Helicopter Engine
,”
ASME
Paper No. GT2010-23810. 10.1115/GT2010-23810
7.
Dawson
,
D.
,
2023
, “
Composites World
,” Ceramic Matrix Composites, accessed Jan. 6, 2023, http://www.compositesworld.com/articles/ceramic-matrix-composites-hot-engine-solution
8.
Spriet
,
P.
,
2014
, “
CMC Applications to Gas Turbines
,”
Ceramic Matrix Composites: Materials, Modeling and Technology
,
N. P.
Bansal
, and
J.
Lamon
, eds.,
Wiley
,
Hoboken, NJ
, pp.
593
608
.
9.
Wamser
,
T.
,
2016
, “
Herstellung von oxidkeramischen Verbundwerkstoffen mittels Freeze-Casting
,” Schriftenreihe Keramische Werkstoffe, Vol. 10.
10.
Göring
,
J.
,
2009
, “
Internationaler Stand Der Entwicklung, Einsatzgebiete Und Produktion Oxidkeramischer Faserverbundwerkstoffe
,” Faserkeramik – Kolloquium, Göring, J., Deutsches Zentrum für Luft und Raumfahrt e.V., updated.
11.
Schmücker
,
M.
, and
Mechnich
,
P.
,
2008
, “
All-Oxide Ceramic Matrix Composites With Porous Matrices
,”
Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications
,
Krenkel, W., Wiley-VCh
,
Weinheim, Germany
, pp.
205
229
.
12.
Scola
,
A.
,
Eberling‐Fux
,
N.
,
Turenne
,
S.
, and
Ruiz
,
E.
,
2019
, “
New Liquid Processing of Oxide/Oxide 3D Woven Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
,
102
(
6
), pp.
3256
3268
.10.1111/jace.16235
13.
Puchas
,
G.
,
Held
,
A.
, and
Krenkel
,
W.
,
2019
, “
Near-Net Shape Manufacture Process for Oxide Fiber Composites (OFC)
,”
Mater. Today: Proc.
,
16
(
Part 1
), pp.
49
58
.10.1016/j.matpr.2019.05.278
14.
Kolloch
,
M.
,
Puchas
,
G.
,
Grigat
,
N.
,
Vollbrecht
,
B.
,
Krenkel
,
W.
, and
Gries
,
T.
, “
Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Composites
,”
Novel Ceramic Materials for the Energy Transition
, Vol.
14
,
J.
Gonzalez-Julian
, ed.,
MDPI Materials
,
Basel
, p.
6338
.
15.
Shi
,
Y.
,
2017
, Characterization and Modelling of the Mechanical Properties of Wound Oxide Ceramic Composites,
Karlsruher Institut Für Technologie
(
KIT
),
Karlsruhe, Germany
.10.5445/IR/1000070478
You do not currently have access to this content.