Abstract

The growing share of renewable energy sources in the energy mix and the liberalization of electricity markets has drastically affected the operation of electricity generators. Especially, in the last decade, fossil fuel-based generators have shifted their role from providing continuous base load to covering the peak demand and providing backup capacity to stabilize the grid. At the same time, a large amount of storage capacity is foreseen to be integrated into electricity grids in the coming years to shave demand peaks, mitigate price volatility, and provide services to the grid. In such a situation, in order to properly manage these crucial technologies, and thus guarantee the economic viability of the operation, it is essential to properly optimize the dispatch and define the best scheduling. This paper considers a gas turbine combined cycle and battery energy storage to study the problem of dispatch optimization of both generators and storage technologies. Different optimization algorithms have been considered and mixed integer linear programming is selected for its ability to identify the global optimum and the reduced optimization time. The impact of optimization windows (i.e., the forecast horizon of electricity prices) is also investigated. It is highlighted that an increase in forecasting ability, at least up to 36 h, guarantees more effective scheduling; on the other hand, it may require a significantly longer time. Subsequently, different approaches to account for the operation and maintenance costs at the optimization stage are assessed, and, finally, a sensitivity analysis is carried out with respect to market parameters (price average and variability) and technology features (conversion efficiency, cycle cost, etc.).

References

1.
Pachauri, R. K., and Meyer, L., 2014, “Climate Change 2014: Synthesis Report,” Intergovernmental Panel on Climate Change
(
IPCC
), Geneva, Switzerland.https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf
2.
Masson-Delmotte, V., Pörtner, H-O., Skea, J., Zhai, P., Roberts, D., Shukla, P. R., Pirani, A., et al.,
2018
, IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, Intergovernmental Panel on Climate Change (
IPCC
),
Geneva, Switzerland
.https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf
3.
Birol, F., Cozzi, L., Gould, T., Bouckaert, S., McGlade, C., Olejarnik, P., Spencer, T., Energy Agency, I.
, et al.,
2021
,
World Energy Outlook 2021
, Scotland, Glasgow.
4.
European Commission
,
2011
,
Energy Roadmap 2050
, Brussels, Belgium.
5.
Bertsch
,
J.
,
Growitsch
,
C.
,
Lorenczik
,
S.
, and
Nagl
,
S.
,
2016
, “
Flexibility in Europe's Power Sector-An Additional Requirement or an Automatic Complement?
,”
Energy Econ.
,
53
, pp. 118–131.10.1016/j.eneco.2014.10.022
6.
Huber
,
M.
,
Dimkova
,
D.
, and
Hamacher
,
T.
,
2014
, “
Integration of Wind and Solar Power in Europe: Assessment of Flexibility Requirements
,”
Energy
,
69
, pp.
236
246
.10.1016/j.energy.2014.02.109
7.
Brouwer
,
A. S.
,
van den Broek
,
M.
,
Seebregts
,
A.
, and
Faaij
,
A.
,
2015
, “
Operational Flexibility and Economics of Power Plants in Future Low-Carbon Power Systems
,”
Appl. Energy
,
156
, pp.
107
128
.10.1016/j.apenergy.2015.06.065
8.
Kondziella
,
H.
, and
Bruckner
,
T.
,
2016
, “
Flexibility Requirements of Renewable Energy Based Electricity Systems—A Review of Research Results and Methodologies
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
10
22
.10.1016/j.rser.2015.07.199
9.
Gonzalez-Salazar
,
M. A.
,
Kirsten
,
T.
, and
Prchlik
,
L.
,
2018
, “
Review of the Operational Flexibility and Emissions of Gas- and Coal-Fired Power Plants in a Future With Growing Renewables
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1497
1513
.10.1016/j.rser.2017.05.278
10.
Eser
,
P.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2017
, “
Operational and Financial Performance of Fossil Fuel Power Plants Within a High Renewable Energy Mix
,”
J. Global Power Propul. Soc.
,
1
, p.
2BIOTO
.10.22261/2BIOTO
11.
Bouakkaz
,
A.
,
Mena
,
A. J. G.
,
Haddad
,
S.
, and
Ferrari
,
M. L.
,
2021
, “
Efficient Energy Scheduling Considering Cost Reduction and Energy Saving in Hybrid Energy System With Energy Storage
,”
J. Energy Storage
,
33
, p.
101887
.10.1016/j.est.2020.101887
12.
Hannan
,
M. A.
,
Wali
,
S. B.
,
Ker
,
P. J.
,
Rahman
,
M. S. A.
,
Mansor
,
M.
,
Ramachandaramurthy
,
V. K.
,
Muttaqi
,
K. M.
,
Mahlia
,
T. M. I.
, and
Dong
,
Z. Y.
,
2021
, “
Battery Energy-Storage System: A Review of Technologies, Optimization Objectives, Constraints, Approaches, and Outstanding Issues
,”
J. Energy Storage
,
42
, p.
103023
.10.1016/j.est.2021.103023
13.
Bellotti
,
D.
,
Rivarolo
,
M.
, and
Magistri
,
L.
,
2022
, “
A Comparative Techno-Economic and Sensitivity Analysis of Power-to-X Processes From Different Energy Sources
,”
Energy Convers. Manag.
,
260
, p.
115565
.10.1016/j.enconman.2022.115565
14.
Rivarolo
,
M.
,
Rattazzi
,
D.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2021
, “
Multi-Criteria Comparison of Power Generation and Fuel Storage Solutions for Maritime Application
,”
Energy Convers. Manag.
,
244
, p.
114506
.10.1016/j.enconman.2021.114506
15.
Rúa
,
J.
, and
Nord
,
L. O.
,
2020
, “
Optimal Control of Flexible Natural Gas Combined Cycles With Stress Monitoring: Linear Vs Nonlinear Model Predictive Control
,”
Appl. Energy
,
265
, p.
114820
.10.1016/j.apenergy.2020.114820
16.
Rossi
,
I.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2017
, “
Gas Turbine Combined Cycle Start-Up and Stress Evaluation: A Simplified Dynamic Approach
,”
Appl. Energy
,
190
, pp.
880
890
.10.1016/j.apenergy.2016.12.141
17.
Rodilla
,
P.
,
Cerisola
,
S.
, and
Batlle
,
C.
,
2014
, “
Modeling the Major Overhaul Cost of Gas-Fired Plants in the Unit Commitment Problem
,”
IEEE Trans. Power Syst.
,
29
(
3
), pp.
1001
1011
.10.1109/TPWRS.2013.2293604
18.
Sorce
,
A.
,
Giugno
,
A.
,
Marino
,
D.
,
Piola
,
S.
, and
Guedez
,
R.
,
2019
, “
Analysis of a Combined Cycle Exploiting Inlet Conditioning Technologies for Power Modulation
,”
ASME
Paper No. GT2019-91541. 10.1115/GT2019-91541
19.
Papakonstantinou
,
A. G.
, and
Papathanassiou
,
S. A.
,
2022
, “
Battery Energy Storage Participation in Automatic Generation Control of Island Systems, Coordinated With State of Charge Regulation
,”
Appl. Sci.
,
12
(
2
), p.
596
.10.3390/app12020596
20.
Betancourt
,
O. A.
,
Sanchez
,
Z. G.
,
Saleh
,
S. A.
,
Hill
,
E. F.
,
Zhao
,
X.
, and
Sanchez
,
F. P.
,
2020
, “
Battery Energy Storage Systems for Primary Frequency Regulation in Island Power Systems
,”
Conference Record—Industrial and Commercial Power Systems Technical Conference
, Las Vegas, NV, June 29–July 28, p.
405
.10.1109/ICPS48389.2020.9176784
21.
Kempton
,
W.
, and
Tomić
,
J.
,
2005
, “
Vehicle-to-Grid Power Fundamentals: Calculating Capacity and Net Revenue
,”
J. Power Sources
,
144
(
1
), pp.
268
279
.10.1016/j.jpowsour.2004.12.025
22.
Lee
,
J. O.
, and
Kim
,
Y. S.
,
2022
, “
Novel Battery Degradation Cost Formulation for Optimal Scheduling of Battery Energy Storage Systems
,”
Int. J. Electr. Power Energy Syst.
,
137
, p.
107795
.10.1016/j.ijepes.2021.107795
23.
Chen
,
Z.
,
Li
,
Z.
, and
Chen
,
G.
,
2022
, “
Optimal Configuration and Operation for User-Side Energy Storage Considering Lithium-Ion Battery Degradation
,”
SSRN Electron. J.,
145, p.
108621
.10.1016/j.ijepes.2022.108621
24.
Mauler
,
L.
,
Duffner
,
F.
,
Zeier
,
W. G.
, and
Leker
,
J.
,
2021
, “
Battery Cost Forecasting: A Review of Methods and Results With an Outlook to 2050
,”
Energy Environ Sci.
,
14
(
9
), pp.
4712
4739
.10.1039/D1EE01530C
25.
Cavo
,
M.
,
Mantelli
,
L.
,
Rivarolo
,
M. A., and Vasylyev, A.
,
2023
, “A MILP Approach for Hybrid Energy Systems Design for Sustainable Maritime Mobility,” ECOS, Gran Canarie, Spain, pp.
1444
1455
.
26.
Vannoni
,
A.
,
Garcia
,
J. A.
,
Mantilla
,
W.
,
Guedez
,
R.
, and
Sorce
,
A.
,
2021
, “
Ancillary Services Potential for Flexible Combined Cycles
,”
ASME
Paper No. GT2021-59587. 10.1115/GT2021-59587
27.
Gallanti, M., Mazzocchi, L., Parozzi, F., and Ricerca sul Sistema Energetico – RSE SpA
,
2014
,
Energia Elettrica, Anatomia Dei Costi
, Milan, Italy.
28.
GME, Gestore Mercati Elettrici
, 2009, “
PUN e Costo Gas
,” GME, Rome, Italy, accessed Oct. 6, 2022, https://www.mercatoelettrico.org/it/Download/DownloadDati.aspx?val=MGP_Prezzi
29.
EMBER, EMBER-Climate
,
2021
, “
Average CO2 Cost
,” Ember, London, UK, accessed Oct. 6, 2022, https://ember-climate.org/data/data-tools/carbon-price-viewer/
30.
C3S, Climate Copernicus
, 2019, “
Temperature
,” C3S, Copenhagen, Denmark, accessed Oct. 12, 2022, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
31.
Fang
,
T.
, and
Lahdelma
,
R.
,
2016
, “
Optimization of Combined Heat and Power Production With Heat Storage Based on Sliding Time Window Method
,”
Appl. Energy
,
162
, pp.
723
732
.10.1016/j.apenergy.2015.10.135
32.
Vannoni
,
A.
,
Belotti
,
D.
,
Sorce
,
A.
, and
Massardo
,
A. F.
,
2021
, “
Analysis of the Impact of Combined Cycle in the Energy Transition
,”
E3S Web Conf.
,
312
, p.
01001
.10.1051/e3sconf/202131201001
You do not currently have access to this content.