Abstract

The next generation of ultrahigh bypass ratio civil aero-engines promises notable engine cycle benefits. However, these benefits can be significantly eroded by a possible increase in nacelle weight and drag due to the typical larger fan diameters. More compact nacelles, with shorter intakes, may be required to enable a net reduction in aero-engine fuel burn. The aim of this paper is to assess the influence of the design style of short intakes on the unsteady interaction under crosswind conditions between fan and intake, with a focus on the separation onset and characteristics of the boundary layer within the intake. Three intake designs were assessed, and a hierarchical computational fluid dynamics (CFD) approach was used to determine and quantify primary aerodynamic interactions between the fan and the intake design. Similar to previous findings for a specific intake configuration, both intake flow unsteadiness and the unsteady upstream perturbations from the fan have a detrimental effect on the separation onset for the range of intake designs. The separation of the boundary layer within the intake was shock driven for the three different design styles. The simulations also quantified the unsteady intake flows with an emphasis on the spectral characteristics and engine-order signatures of the flow distortion. Overall, this work showed that is beneficial for the intake boundary layer to delay the diffusion closer to the fan and reduce the preshock Mach number to mitigate the adverse unsteady interaction between the fan and the shock.

References

1.
Daggett
,
D.
,
Brown
,
S.
, and
Kawai
,
R.
,
2003
, “
Ultra-Efficient Engine Diameter Study
,” NASA, Washington, DC, Report No.
212309
.https://ntrs.nasa.gov/citations/20030061085
2.
ESDU
,
1981
, “
Mass Flow and Momentum Functions for One-Dimensional Flow of Gas in Ducts
,” Engineering Sciences Data Unit, Data Items, Report No.
81004
.https://www.esdu.com/cgi-bin/ps.pl?t=doc&p=esdu_81004
3.
Sobester
,
A.
,
2007
, “
Tradeoffs in Jet Inlet Design: A Historical Perspective
,”
J. Aircr.
,
44
(
3
), pp.
705
717
.10.2514/1.26830
4.
Trapp
,
L. G.
, and
Da Motta Girardi
,
R.
,
2010
, “
Crosswind Effects on Engine Inlets: The Inlet Vortex
,”
J. Aircr.
,
47
(
2
), pp.
577
590
.10.2514/1.45743
5.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.10.1115/1.4028235
6.
Rodert
,
L. A.
, and
Garrett
,
F. B.
,
1955
, “
Ingestion of Foreign Objects Into Turbine Engines by Vortices
,” NACA, Boston, MA, Report No.
NACA-TN-3330
.https://digital.library.unt.edu/ark:/67531/metadc57439/
7.
Murphy
,
J. P.
, and
MacManus
,
D. G.
,
2011
, “
Inlet Ground Vortex Aerodynamics Under Headwind Conditions
,”
Aerosp. Sci. Technol.
,
15
(
3
), pp.
207
215
.10.1016/j.ast.2010.12.005
8.
Coschignano
,
A.
, and
Babinsky
,
H.
,
2019
, “
Boundary-Layer Development Downstream of Normal Shock in Transonic Intakes at Incidence
,”
AIAA J.
,
57
(
12
), pp.
5241
5251
.10.2514/1.J058508
9.
Awes
,
A.
,
Brosse
,
A.
,
Dufour
,
G.
,
Carbonneau
,
X.
, and
Godard
,
B.
,
2020
, “
Effect of a Vortex Distortion on the Operability of an Ultra High Bypass Ratio Fan
,”
ASME
Paper No. GT2020-14596.10.1115/GT2020-14596
10.
Wakelam
,
C. T.
,
Hynes
,
T. P.
,
Hodson
,
H. P.
,
Evans
,
S. W.
, and
Chanez
,
P.
,
2012
, “
Separation Control for Aeroengine Intakes, Part 1: Low-Speed Investigation of Control Strategies
,”
J. Propul. Power
,
28
(
4
), pp.
758
765
.10.2514/1.B34326
11.
Wakelam
,
C. T.
,
Hynes
,
T. P.
,
Hodson
,
H. P.
,
Evans
,
S. W.
, and
Chanez
,
P.
,
2012
, “
Separation Control for Aeroengine Intakes, Part 2: Highspeed Investigations
,”
J. Propul. Power
,
28
(
4
), pp.
766
772
.10.2514/1.B34327
12.
Yeung
,
A.
,
Vadlamani
,
N. R.
,
Hynes
,
T.
, and
Sarvankar
,
S.
,
2019
, “
Quasi 3D Nacelle Design to Simulate Crosswind Flows: Merits and Challenges
,”
Int. J. Turbomach., Propul. Power
,
4
(
3
), p.
25
.10.3390/ijtpp4030025
13.
Nichols
,
D. A.
,
Vukasinovic
,
B.
,
Glezer
,
A.
,
Defore
,
M.
,
Rafferty
,
B.
, and
Palacios
,
F. D.
,
2019
, “
Characterization and Control of Nacelle Inlet Flow in Crosswind
,”
AIAA
Paper No. 2019-3685.10.2514/6.2019-3685
14.
Nichols
,
D. A.
,
Vukasinovic
,
B.
,
Glezer
,
A.
,
Defore
,
M.
, and
Rafferty
,
B.
,
2020
, “
Fluidic Control of Nacelle Inlet Flow in Crosswind
,”
AIAA
Paper No. 2020-2955.10.2514/6.2020-2955
15.
Magrini
,
A.
, and
Benini
,
E.
,
2022
, “
Study of Geometric Parameters for the Design of Short Intakes With Fan Modelling
,”
Chin. J. Aeronaut.
,
35
(
11
), pp.
18
32
.10.1016/j.cja.2022.01.018
16.
Magrini
,
A.
,
Bousi
,
D.
, and
Benini
,
E.
,
2022
, “
Analysis of Ultra-High Bypass Ratio Turbofan Nacelle Geometries With Conventional and Short Intakes at Take-Off and Cruise
,”
ASME
Paper No. GT2022-81912.10.1115/GT2022-81912
17.
Gunn
,
E. J.
,
Brandvik
,
T.
, and
Wilson
,
M. J.
,
2021
, “
Fan-Intake Coupling With Conventional and Short Intakes
,”
ASME
Paper No. GT2021-58829.10.1115/GT2021-58829
18.
Silva
,
V. T.
,
Lundbladh
,
A.
,
Petit
,
O.
, and
Xisto
,
C.
,
2022
, “
Multipoint Aerodynamic Design of Ultrashort Nacelles for Ultrahigh-Bypassratio Engines
,”
J. Propul. Power
,
38
(
4
), pp.
541
558
.10.2514/1.B38497
19.
Zantopp
,
S.
,
MacManus
,
D.
, and
Murphy
,
J.
,
2010
, “
Computational and Experimental Study of Intake Ground Vortices
,”
Aeronaut. J.
,
114
(
1162
), pp.
769
784
.10.1017/S0001924000004255
20.
Mishra
,
N.
,
MacManus
,
D.
, and
Murphy
,
J.
,
2012
, “
Intake Ground Vortex Characteristics
,”
Proc. Inst. Mech. Eng., Part G
,
226
(
11
), pp.
1387
1400
.10.1177/0954410011424092
21.
Motycka
,
D. L.
,
Walter
,
W.
, and
Muller
,
G.
,
1973
, “
An Analytical and Experimental Study of Inlet Ground Vortices
,”
AIAA
Paper No. 73-1313.10.2514/6.73-1313
22.
Freeman
,
C.
, and
Rowe
,
A. L.
,
1999
, “
Intake Engine Interactions of a Modern Large Turbofan Engine
,”
ASME
Paper No. 99-GT-344.10.1115/99-GT-344
23.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2019
, “
Effects of Inlet Disturbances on Fan Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051014
.10.1115/1.4042204
24.
Vadlamani
,
N. R.
,
Cao
,
T.
,
Watson
,
R.
, and
Tucker
,
P. G.
,
2019
, “
Toward Future Installations: Mutual Interactions of Short Intakes With Modern High Bypass Fans
,”
ASME J. Turbomach.
,
141
(
8
), p.
081013
.10.1115/1.4044080
25.
Boscagli
,
L.
,
Christie
,
R.
,
MacManus
,
D.
, and
Piovesan
,
T.
,
2022
, “
Aerodynamics of a Short Intake in Crosswind
,”
Aerosp. Sci. Technol.
,
129
, p.
107826
.10.1016/j.ast.2022.107826
26.
Mohankumar
,
B.
,
Hall
,
C. A.
, and
Wilson
,
M. J.
,
2021
, “
Fan Aerodynamics With a Short Intake at High Angle of Attack
,”
ASME J. Turbomach.
,
143
(
5
), p.
051003
.10.1115/1.4050606
27.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,”
Ph.D. thesis
,
Oxford University, Oxford, UK
.https://people.maths.ox.ac.uk/gilesm/files/pierre_thesis.pdf
28.
Almendral-Fernandez
,
G.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2018
, “
Use of a Zonal Hybrid URANS-LES Methodology for Prediction of Rim Seal Ingestion Into a Low Pressure Turbine Cavity
,”
AIAA
Paper No. 2018-4917.10.2514/6.2018-4917
29.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
One-Equation Turbulence Model for Aerodynamic Flows
,” Recherche aerospatiale, No. 1, p.
5.21
.https://turbmodels.larc.nasa.gov/Papers/RechAerosp_1994_SpalartAllmaras.pdf
30.
Colin
,
Y.
,
Aupoix
,
B.
,
Boussuge
,
J.
, and
Chanez
,
P.
,
2007
, “
Numerical Simulation of the Distortion Generated by Crosswind Inlet Flows
,” Paper No.
ISABE-2007-1210
, p.
1.13
.https://www.cerfacs.fr/~cfdbib/repository/TR_CFD_07_129.pdf
31.
Cao
,
T.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2017
, “
Hierarchical Immersed Boundary Method With Smeared Geometry
,”
J. Propul. Power
,
33
(
5
), pp.
1151
1163
.10.2514/1.B36190
32.
Cui
,
J.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P.
,
2019
, “
Low Order Modeling for Fan and Outlet Guide Vanes in Aero-Engines
,”
ASME J. Turbomach.
,
141
(
3
), p.
031002
.10.1115/1.4042202
33.
Cao
,
T.
,
Vadlamani
,
N. R.
,
Tucker
,
P. G.
,
Smith
,
A. R.
,
Slaby
,
M.
, and
Sheaf
,
C. T.
,
2017
, “
Fan-Intake Interaction Under High Incidence
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041204
.10.1115/1.4034701
34.
Carnevale
,
M.
,
Wang
,
F.
,
Green
,
J. S.
, and
Mare
,
L. D.
,
2016
, “
Lip Stall Suppression in Powered Intakes
,”
J. Propul. Power
,
32
(
1
), pp.
161
170
.10.2514/1.B35811
35.
Carnevale
,
M.
,
Wang
,
F.
, and
Mare
,
L. D.
,
2017
, “
Low Frequency Distortion in Civil Aero-Engine Intake
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041203
.10.1115/1.4034600
36.
Ma
,
Y.
,
2019
, “
Mixed-Fidelity CFD Simulations for Aero-Engines
,”
Ph.D. thesis
,
University of Cambridge, Cambridge, UK
.https://www.repository.cam.ac.uk/bitstreams/1af47295-197a-4742-a7f1-3396c843ffcd/download
37.
ANSYS Inc.
,
2016
, “
ANSYS ICEM CFD User's Manual
,” ANSYS Inc., Canonsburg, PA.
38.
Milli
,
A.
, and
Shahpar
,
S.
,
2012
, “
Padram: Parametric Design and Rapid Meshing System for Complex Turbomachinery Configurations
,”
ASME
Paper No. GT2012-69030.10.1115/GT2012-69030
39.
Christie
,
R.
,
Heidebrecht
,
A.
, and
MacManus
,
D.
,
2017
, “
An Automated Approach to Nacelle Parameterization Using Intuitive Class Shape Transformation Curves
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062601
.10.1115/1.4035283
40.
Christie
,
R.
,
Robinson
,
M.
,
Tejero
,
F.
, and
MacManus
,
D. G.
,
2019
, “
The Use of Hybrid Intuitive Class Shape Transformation Curves in Aerodynamic Design
,”
Aerosp. Sci. Technol.
,
95
, p.
105473
.10.1016/j.ast.2019.105473
41.
Kulfan
,
B. M.
,
2008
, “
Universal Parametric Geometry Representation Method
,”
J. Aircr.
,
45
(
1
), pp.
142
158
.10.2514/1.29958
42.
Schlichting
,
H.
, and
Gersten
,
K.
,
2003
,
Boundary-Layer Theory
,
Springer Science & Business Media
,
Berlin
.
43.
Cooley
,
J. W.
, and
Tukey
,
J. W.
,
1965
, “
An Algorithm for the Machine Calculation of Complex Fourier Series
,”
Math. Comput.
,
19
(
90
), pp.
297
301
.10.1090/S0025-5718-1965-0178586-1
44.
MacManus
,
D. G.
,
Chiereghin
,
N.
,
Prieto
,
D. G.
, and
Zachos
,
P.
,
2017
, “
Complex Aeroengine Intake Ducts and Dynamic Distortion
,”
AIAA J.
,
55
(
7
), pp.
2395
2409
.10.2514/1.J054905
45.
Migliorini
,
M.
,
Zachos
,
P. K.
, and
MacManus
,
D. G.
,
2022
, “
Novel Method for Evaluating Intake Unsteady Flow Distortion
,”
J. Propul. Power
,
38
(
1
), pp.
135
147
.10.2514/1.B38127
46.
Van Der Wall
,
B. G.
, and
Richard
,
H.
,
2005
, “
Analysis Methodology for 3C-PIV Data of Rotary Wing Vortices
,”
Exp. Fluids
, 40, pp.
798
812
.10.1007/s00348-006-0117-x
47.
Wu
,
M.
, and
Martin
,
M. P.
,
2008
, “
Analysis of Shock Motion in Shockwave and Turbulent Boundary Layer Interaction Using Direct Numerical Simulation Data
,”
J. Fluid Mech.
,
594
, pp.
71
83
.10.1017/S0022112007009044
48.
Cousins
,
W. T.
,
2004
, “
History, Philosophy, Physics, and Future Directions of Aircraft Propulsion System/Inlet Integration
,”
ASME
Paper No. GT2004-54210.10.1115/GT2004-54210
49.
Bruce
,
P. J.
, and
Babinsky
,
H.
,
2008
, “
Unsteady Shock Wave Dynamics
,”
J. Fluid Mech.
,
603
, pp.
463
473
.10.1017/S0022112008001195
50.
Davidson
,
T. S.
, and
Babinsky
,
H.
,
2018
, “
Influence of Boundary-Layer State on Development Downstream of Normal Shock Interactions
,”
AIAA J.
,
56
(
6
), pp.
2298
2307
.10.2514/1.J056567
51.
Ewert
,
R.
, and
Schroder
,
W.
,
2004
, “
On the Simulation of Trailing Edge Noise With a Hybrid LES/APE Method
,”
J. Sound Vib.
,
270
(
3
), pp.
509
524
.10.1016/j.jsv.2003.09.047
52.
Murphy
,
J. P.
, and
MacManus
,
D. G.
,
2011
, “
Ground Vortex Aerodynamics Under Crosswind Conditions
,”
Exp. Fluids
,
50
(
1
), pp.
109
124
.10.1007/s00348-010-0902-4
53.
Sureshkumar
,
P.
,
Lee
,
K.-B.
,
Puente
,
R.
, and
Stapelfeldt
,
S.
,
2022
, “
Impact of the Spatial Arrangement of Inlet Distortions on Resonant Fan Response
,”
Proceedings of Global Power and Propulsion Society
, Chania, Crete, Sept.
18
20
.10.33737/gpps22-tc-132
54.
Rao
,
A. N.
,
Sureshkumar
,
P.
,
Stapelfeldt
,
S.
,
Lad
,
B.
,
Lee
,
K.-B.
, and
Rico
,
R. P.
,
2022
, “
Unsteady Analysis of Aeroengine Intake Distortion Mechanisms: Vortex Dynamics in Crosswind Conditions
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121005
.10.1115/1.4055279
55.
Berthelon
,
T.
,
Dugeai
,
A.
,
Langridge
,
J.
, and
Thouverez
,
F.
,
2019
, “
Analysis of Vortex Ingestion Impact on the Dynamic Response of the Fan in Resonance Condition
,”
ASME
Paper No. GT2019-90939.10.1115/GT2019-90939
56.
Vahdati
,
M.
,
Lee
,
K.-B.
, and
Sureshkumar
,
P.
,
2020
, “
A Review of Computational Aeroelasticity of Civil Fan Blades
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
11
(
4
), pp.
22
35
.10.38036/jgpp.11.4_22
57.
Pages
,
V.
,
Duquesne
,
P.
,
Aubert
,
S.
,
Blanc
,
L.
,
Ferrand
,
P.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2022
, “
UHBR Open-Test-Case Fan ECL5/CATANA
,”
Int. J. Turbomach., Propul. Power
,
7
(
2
), p.
17
.10.3390/ijtpp7020017
You do not currently have access to this content.