Abstract

In this study, the acoustics and flame dynamics of a prototype multi jet burner with 19 individual mixing tubes for operation with pure hydrogen and pure natural gas are experimentally investigated. The burner transfer matrix (BTM) of the jet burner is determined from experimental data and acoustic network modeling, showing very good agreement. The burner plate and attached mixing tubes are shown to be well approximated with an acoustic model of a perforated plate with bias flow. Accordingly, the burner is found to feature a high level of acoustic damping. A comparison of the flame dynamics of the two fuels considering mass flow and equivalence ratio variation reveals that the flame transfer functions (FTFs) are dominated by a convective mechanism originating from the upstream end of the mixing tubes where the fuel is injected. Consequently, these are most likely fluctuations in the equivalence ratio that feature two characteristic time scales: the convection time in the mixing tubes and along the flame. The overall qualitative shape of the FTFs for hydrogen and natural gas at equal thermal power is found to be similar, with the dynamics of the natural gas flames being more responsive to acoustic excitation, as evident in generally higher gain values. Distinctly less pronounced phase decays are observed for hydrogen compared to natural gas operation. Moreover, the FTFs for H2 are found to change only slightly across the considered range of equivalence ratios. At the same time, we observe only small changes in the corresponding static flame shapes. These observations are consistent with the hypothesis of a dominant convective mechanism. In conclusion, the study provides valuable information on the acoustics and flame dynamics of multi jet burners for flexible fuel operation.

References

1.
TerMaath
,
C. Y.
,
Skolnik
,
E. G.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
,
2006
, “
Emissions Reduction Benefits From Hydrogen Addition to Midsize Gas Turbine Feedstocks
,”
Int. J. Hydrogen Energy
,
31
(
9
), pp.
1147
1158
.10.1016/j.ijhydene.2005.10.002
2.
Ćosic
,
B.
,
Wassmer
,
D.
,
Kluß
,
D.
,
Jaeschke
,
A.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2022
, “
Experimental and Numerical Advancement of the MGT Combustor Towards Higher Hydrogen Capabilities
,”
ASME
Paper No. GT2022-82110.10.1115/GT2022-82110
3.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
4.
ETN Global
,
2020
, “
Hydrogen of Gas Turbines - The Path Towards a Zero-Carbon Gas Turbine
,”
ETN
,
Brussels, Belgium
, Report No. 2020-01, https://etn.global/wp-content/uploads/2020/01/ETN-Hydrogen-Gas-Turbines-report.pdf
5.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F. M.
,
Mokheimer
,
E. M.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.10.1016/j.apenergy.2015.04.044
6.
Drell
,
I. L.
, and
Belles
,
F. E.
,
1957
, “
Survey of Hydrogen Combustion Properties
,” National Advisory Commitee for Aeronautcs, Washington, DC, Report No.
NACA-RM-E57D24
.https://ntrs.nasa.gov/citations/19930091021
7.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
8.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
9.
Novoselov
,
A. G.
,
Ebi
,
D.
, and
Noiray
,
N.
,
2022
, “
Accurate Prediction of Confined Turbulent Boundary Layer Flashback Through a Critically Strained Flame Model
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101013
.10.1115/1.4055413
10.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
11.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.10.2514/2.6182
12.
Rayleigh
,
L.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
, 18, pp.
319
321
.10.1038/018319a0
13.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
,
1987
, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
, pp.
265
292
.10.1017/S0022112087000958
14.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.10.1016/j.combustflame.2014.07.012
15.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symposium (International) on Combustion
, Elsevier, Amsterdam, The Netherlands Vol.
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
16.
Kather
,
V.
,
Lückoff
,
F.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2021
, “
Interaction of Equivalence Ratio Fluctuations and Flow Fluctuations in Acoustically Forced Swirl Flames
,”
Int. J. Spray Combust. Dyn.
,
13
(
1–2
), pp.
72
95
.10.1177/17568277211015544
17.
Polifke
,
W.
,
2004
, “
Combustion Instabilities
,”
Advances in Aeroacoustics and Applications, Von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, Mar. 15–19.
18.
Candel
,
S. M.
,
1992
, “
Combustion Instabilities Coupled by Pressure Waves and Their Active Control
,” Symposium International on Combustion, Elsevier, Amsterdam, The Netherlands, Vol.
24
(
1
), pp.
1277
1296.
19.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
20.
Steinbacher
,
T.
,
Albayrak
,
A.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Response of Premixed Flames to Irrotational and Vortical Velocity Fields Generated by Acoustic Perturbations
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5367
5375
.10.1016/j.proci.2018.07.041
21.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
22.
Lipatnikov
,
A.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
1
73
.10.1016/j.pecs.2004.07.001
23.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2006
, “
Self-Induced Instabilities of Premixed Flames in a Multiple Injection Configuration
,”
Combust. Flame
,
145
(
3
), pp.
435
446
.10.1016/j.combustflame.2006.01.006
24.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
25.
Soundararajan
,
P. R.
,
Durox
,
D.
,
Vignat
,
G.
,
Renaud
,
A.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2022
, “
Comparison of Flame Describing Functions Measured in Single and Multiple Injector Configurations
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111023
.10.1115/1.4055451
26.
Therkelsen
,
P. L.
,
Portillo
,
J. E.
,
Littlejohn
,
D.
,
Martin
,
S. M.
, and
Cheng
,
R. K.
,
2013
, “
Self-Induced Unstable Behaviors of CH4 and H2/CH4 Flames in a Model Combustor With a Low-Swirl Injector
,”
Combust. Flame
,
160
(
2
), pp.
307
321
.10.1016/j.combustflame.2011.11.008
27.
Karlis
,
E.
,
Liu
,
Y.
,
Hardalupas
,
Y.
, and
Taylor
,
A. M.
,
2019
, “
H2 Enrichment of CH4 Blends in Lean Premixed Gas Turbine Combustion: An Experimental Study on Effects on Flame Shape and Thermoacoustic Oscillation Dynamics
,”
Fuel
,
254
, p.
115524
.10.1016/j.fuel.2019.05.107
28.
Zhang
,
J.
, and
Ratner
,
A.
,
2019
, “
Experimental Study on the Excitation of Thermoacoustic Instability of Hydrogen-Methane/Air Premixed Flames Under Atmospheric and Elevated Pressure Conditions
,”
Int. J. Hydrogen Energy
,
44
(
39
), pp.
21324
21335
.10.1016/j.ijhydene.2019.06.142
29.
Casel
,
M.
, and
Ghani
,
A.
,
2022
, “
Analysis of the Flame Dynamics in Methane/Hydrogen Fuel Blends at Elevated Pressures
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4631
4640
10.1016/j.proci.2022. 07.211.
30.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
31.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
32.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2018
, “Methods for the Calculation of Thermoacoustic Stability Boundaries and Monte Carlo-Free Uncertainty Quantification.”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061501
.10.1115/1.4038156
33.
Reumschüssel
,
J. M.
,
von Saldern
,
J. G. R.
,
Li
,
Y.
,
Paschereit
,
C. O.
, and
Orchini
,
A.
,
2022
, “
Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051004
.10.1115/1.4052087
34.
Jaeschke
,
A.
,
Wassmer
,
D.
,
Ćosić
,
B.
, and
Paschereit
,
C.
,
2023
, “
Experimental Investigation of a Multi Tube Burner for Premixed Hydrogen and Natural Gas Low Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
, 145(12), p.
121010
.10.1115/1.4063378
35.
Schuermans
,
B.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
,
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
.10.5075/epfl-thesis-2800
36.
Jang
,
S.-H.
, and
Ih
,
J.-G.
,
1998
, “
On the Multiple Microphone Method for Measuring in-Duct Acoustic Properties in the Presence of Mean Flow
,”
J. Acoust. Soc. Am.
,
103
(
3
), pp.
1520
1526
.10.1121/1.421289
37.
Paschereit
,
C. O.
, and
Polifke
,
W.
,
1998
, “
Investigation of the Thermoacoustic Characteristics of a Lean Premixed Gas Turbine Burner
,”
ASME
Paper No. 98-GT-582.10.1115/98-GT-582
38.
Gentemann
,
A.
,
Fischer
,
A.
,
Evesque
,
S.
, and
Polifke
,
W.
,
2003
, “
Acoustic Transfer Matrix Reconstruction and Analysis for Ducts With Sudden Change of Area
,”
AIAA
Paper No. 2003-3142. 10.2514/6.2003-3142
39.
Polifke
,
W.
,
2010
, “
Low-Order Analysis Tools for Aero-and Low-Order Analysis Tools for Aero-and Thermo-Acoustic Instabilities
,”
Lecture Series Advances in Aero-Acoustics and Thermo-Acoustics
,
Von Karman Institute
,
Rhode-St-Genèse, Belgium
.
40.
Lahiri
,
C.
, and
Bake
,
F.
,
2017
, “
A Review of Bias Flow Liners for Acoustic Damping in Gas Turbine Combustors
,”
J. Sound Vib.
,
400
, pp.
564
605
.10.1016/j.jsv.2017.04.005
41.
Scarpato
,
A.
,
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2012
, “
Modeling the Damping Properties of Perforated Screens Traversed by a Bias Flow and Backed by a Cavity at Low Strouhal Number
,”
J. Sound Vib.
,
331
(
2
), pp.
276
290
.10.1016/j.jsv.2011.09.005
42.
Zhao
,
D.
,
Morgans
,
A. S.
, and
Dowling
,
A. P.
,
2011
, “
Tuned Passive Control of Acoustic Damping of Perforated Liners
,”
AIAA J.
,
49
(
4
), pp.
725
734
.10.2514/1.J050613
43.
Howe
,
M.
,
1979
, “
On the Theory of Unsteady High Reynolds Number Flow Through a Circular Aperture
,”
Proc. R. Soc. London, A
,
366
(
1725
), pp.
205
223
.10.1098/rspa.1979.0048
44.
Howe
,
M.
,
Scott
,
M.
, and
Sipcic
,
S.
,
1996
, “
The Influence of Tangential Mean Flow on the Rayleigh Conductivity of an Aperture
,”
Proc. R. Soc. London. Ser. A
,
452
(
1953
), pp.
2303
2317
.10.1098/rspa.1996.0123.
45.
von Saldern
,
J. G.
,
Eck
,
M. E.
,
Beuth
,
J. P.
,
Ćosić
,
B.
, and
Oberleithner
,
K.
,
2022
, “
Acoustic Characteristics of Impingement Cooling Sheets; Effect of Bias-Grazing Flow Interaction on the Liner Impedance in a Thin Annulus
,”
J. Sound Vib.
,
527
, p.
116818
.10.1016/j.jsv.2022.116818
46.
Jing
,
X.
, and
Sun
,
X.
,
1999
, “
Experimental Investigations of Perforated Liners With Bias Flow
,”
J. Acoust. Soc. Am.
,
106
(
5
), pp.
2436
2441
.10.1121/1.428128
47.
Bechert
,
D.
,
1980
, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
,
70
(
3
), pp.
389
405
.10.1016/0022-460X(80)90307-7
48.
Schuller
,
T.
,
Durox
,
D.
,
Palies
,
P.
, and
Candel
,
S.
,
2012
, “
Acoustic Decoupling of Longitudinal Modes in Generic Combustion Systems
,”
Combust. Flame
,
159
(
5
), pp.
1921
1931
.10.1016/j.combustflame.2012.01.010
49.
Schuermans
,
B.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132. 10.1115/99-GT-132
50.
Kashinath
,
K.
,
Hemchandra
,
S.
, and
Juniper
,
M. P.
,
2013
, “
Nonlinear Thermoacoustics of Ducted Premixed Flames: The Influence of Perturbation Convection Speed
,”
Combust. Flame
,
160
(
12
), pp.
2856
2865
.10.1016/j.combustflame.2013.06.019
51.
Crow
,
S. C.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.10.1017/S0022112071001745
52.
von Saldern
,
J. G. R.
,
Reumschüssel
,
J. M.
,
Beuth
,
J. P.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2022
, “
Robust Combustor Design Based on Flame Transfer Function Modification
,”
Int. J. Spray Combust. Dyn.
,
14
(
1–2
), pp.
186
196
.10.1177/17568277221088422
53.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), pp.
1
7
.10.1115/GT2009-60100
54.
Polifke
,
W.
, and
Lawn
,
C.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
You do not currently have access to this content.