Abstract

The parametric vibration and combined resonance of a turbine blade with a preset angle subjected to the combined effect of parametric and forced excitation were investigated. The blade was modeled as a rotating beam considering the effects of centrifugal, gyroscopic, and bending-torsion coupling. The instability region of the corresponding linear system with parametric excitation was analyzed using Floquet theory, and the effect of blade parameters on this region was discussed. Notably, the parametric vibration of the torsional degree-of-freedom (DOF) caused by parametric excitation of the bending degree-of-freedom has been found. The results show that the size and position of the parameter resonance region are affected by the blade aspect ratio and preset angle, respectively. Furthermore, the multiscale method was employed to solve the blade equation under the combined action of parametric and forced excitation to study the combined resonance caused by forced excitation and gyroscopic items. The effect of blade parameters and excitation characteristics on regions of combined resonance were investigated. The phenomenon of heteroclinic bifurcation was observed due to changes in the excitation frequency, and the harmonic components that accompanied the bifurcation changed. Specifically, a multiperiod response dominated by the excitation frequency and subharmonic components shifted to a single-period response dominated by subharmonic components. This study provides a theoretical explanation for the nonsynchronous resonance of blades and the subharmonic signals in blade vibration and guides blade parameter design, especially for wind turbines.

References

1.
Ikeda
,
T.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2018
, “
Parametric Instability and Localization of Vibrations in Three-Blade Wind Turbines
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071001
.10.1115/1.4039899
2.
Maktouf
,
R.
,
Yangui
,
M.
,
Fakhfekh
,
T.
,
Nasri
,
R.
, and
Haddar
,
M.
,
2019
, “
Non-Linear Dynamic Analysis of a Wind Turbine Blade
,”
J. Chin. Inst. Eng.
,
42
(
8
), pp.
727
737
.10.1080/02533839.2019.1660229
3.
González-Carbajal
,
J.
,
Rincón-Casado
,
A.
,
García-Vallejo
,
D.
, and
Domínguez
,
J.
,
2022
, “
Nonlinear Solutions for the Steady State Oscillations of a Clamped–Free Rotating Beam
,”
Eur. J. Mech./A Solids
,
91
, p.
104413
.10.1016/j.euromechsol.2021.104413
4.
Roy
,
P. A.
, and
Meguid
,
S. A.
,
2018
, “
Analytical Modeling of the Coupled Nonlinear Free Vibration Response of a Rotating Blade in a Gas Turbine Engine
,”
Acta Mech.
,
229
(
8
), pp.
3355
3373
.10.1007/s00707-018-2165-8
5.
Dai
,
L. M.
,
Xia
,
D. D.
, and
Chen
,
C. P.
,
2017
, “
Regular and Nonlinear Dynamics of Horizontal Axis Wind Turbine Blades Subjected to Fluctuating Wind Loads
,”
Energy Procedia
,
110
, pp.
529
536
.10.1016/j.egypro.2017.03.180
6.
Chang
,
L.
,
Yu
,
Y. J.
, and
Liu
,
T. R.
,
2021
, “
Aeroelastic Vibration Analysis of Wind Turbine Blade With Gurney Flap
,”
Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
,
235
(
20
), pp.
4913
4925
.10.1177/0954406220977881
7.
Guo
,
X. Y.
,
Yang
,
X. D.
, and
Wang
,
S. W.
,
2019
, “
Dynamic Characteristics of a Rotating Tapered Cantilevered Timoshenko Beam With Preset and Pre-Twist Angles
,”
Int. J. Struct. Stabil. Dyn.
,
19
(
04
), p.
1950043
.10.1142/S0219455419500433
8.
Xie
,
J.
,
Zi
,
Y.
,
Zhang
,
M.
, and
Luo
,
Q.
,
2019
, “
A Novel Vibration Modeling Method for a Rotating Blade With Breathing Cracks
,”
Sci. China Technol. Sci.
,
62
(
2
), pp.
333
348
.10.1007/s11431-018-9286-5
9.
Seraj
,
S.
, and
Ganesan
,
R.
,
2018
, “
Dynamic Instability of Rotating Doubly-Tapered Laminated Composite Beams Under Periodic Rotational Speeds
,”
Compos. Struct.
,
200
, pp.
711
728
.10.1016/j.compstruct.2018.05.133
10.
Acar
,
G. D.
, and
Feeny
,
B. F.
,
2018
, “
Bend‐Bend‐Twist Vibrations of a Wind Turbine Blade
,”
Wind Energy
,
21
(
1
), pp.
15
28
.10.1002/we.2141
11.
Liang
,
F.
,
Li
,
Z.
,
Yang
,
X.-D.
,
Zhang
,
W.
, and
Yang
,
T.-Z.
,
2019
, “
Coupled Bending–Bending–Axial–Torsional Vibrations of Rotating Blades
,”
Acta Mech. Solida Sin.
,
32
(
3
), pp.
326
338
.10.1007/s10338-019-00075-w
12.
Zhang
,
W.
,
Niu
,
Y.
, and
Behdinan
,
K.
,
2020
, “
Vibration Characteristics of Rotating Pretwisted Composite Tapered Blade With Graphene Coating Layers
,”
Aerosp. Sci. Technol.
,
98
, p.
105644
.10.1016/j.ast.2019.105644
13.
Lotfan
,
S.
,
Anamagh
,
M. R.
,
Bediz
,
B.
, and
Cigeroglu
,
E.
,
2022
, “
Nonlinear Resonances of Axially Functionally Graded Beams Rotating With Varying Speed Including Coriolis Effects
,”
Nonlinear Dyn.
,
107
(
1
), pp.
533
558
.10.1007/s11071-021-07055-1
14.
Latalski
,
J.
, and
Warminski
,
J.
,
2022
, “
Primary and Combined Multi-Frequency Parametric Resonances of a Rotating Thin-Walled Composite Beam Under Harmonic Base Excitation
,”
J. Sound Vib.
,
523
, p.
116680
.10.1016/j.jsv.2021.116680
15.
Zhang
,
B.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2020
, “
Subharmonic and Combination Resonance of Rotating Pre-Deformed Blades Subjected to High Gas Pressure
,”
Acta Mech. Solida Sin.
,
33
(
5
), pp.
635
649
.10.1007/s10338-020-00168-x
16.
Li
,
L.
,
Li
,
Y. H.
,
Liu
,
Q. K.
, and
Lv
,
H. W.
,
2014
, “
Flapwise Non-Linear Dynamics of Wind Turbine Blades With Both External and Internal Resonances
,”
Int. J. Non-Linear Mech.
,
61
, pp.
1
14
.10.1016/j.ijnonlinmec.2014.01.006
17.
Zhang
,
B.
,
Zhang
,
Y.-L.
,
Yang
,
X.-D.
, and
Chen
,
L.-Q.
,
2019
, “
Saturation and Stability in Internal Resonance of a Rotating Blade Under Thermal Gradient
,”
J. Sound Vib.
,
440
, pp.
34
50
.10.1016/j.jsv.2018.10.012
18.
Zhang
,
B.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2019
, “
Super-Harmonic Resonances of a Rotating Pre-Deformed Blade Subjected to Gas Pressure
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2531
2549
.10.1007/s11071-019-05367-x
19.
Zhang
,
B.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2020
, “
Three to One Internal Resonances of a Pre-Deformed Rotating Beam With Quadratic and Cubic Nonlinearities
,”
Int. J. Non-Linear Mech.
,
126
, p.
103552
.10.1016/j.ijnonlinmec.2020.103552
20.
Zhang
,
W.
,
Liu
,
G.
, and
Siriguleng
,
B.
,
2020
, “
Saturation Phenomena and Nonlinear Resonances of Rotating Pretwisted Laminated Composite Blade Under Subsonic Air Flow Excitation
,”
J. Sound Vib.
,
478
, p.
115353
.10.1016/j.jsv.2020.115353
21.
Arvin
,
H.
,
Arena
,
A.
, and
Lacarbonara
,
W.
,
2020
, “
Nonlinear Vibration Analysis of Rotating Beams Undergoing Parametric Instability: Lagging-Axial Motion
,”
Mech. Syst. Signal Process.
,
144
, p.
106892
.10.1016/j.ymssp.2020.106892
22.
Inoue
,
T.
,
Ishida
,
Y.
, and
Kiyohara
,
T.
,
2012
, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out of Plane Vibration of the Elastic Blade)
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031009
.10.1115/1.4005829
23.
Li
,
Q.
,
Liu
,
W.
,
Lu
,
K.
, and
Yue
,
Z.
,
2020
, “
Nonlinear Parametric Vibration of the Geometrically Imperfect Pipe Conveying Pulsating Fluid
,”
Int. J. Appl. Mech.
,
12
(
6
), p.
2050064
.10.1142/S1758825120500647
24.
Lu
,
Q.
,
Sun
,
Z.
, and
Zhang
,
W.
,
2020
, “
Nonlinear Parametric Vibration With Different Orders of Small Parameters for Stayed Cables
,”
Eng. Struct.
,
224
, p.
111198
.10.1016/j.engstruct.2020.111198
25.
Dolatabad
,
M. R.
,
Pasharavesh
,
A.
, and
Khayyat
,
A. A. A.
,
2022
, “
Analytical and Experimental Analyses of Nonlinear Vibrations in a Rotary Inverted Pendulum
,”
Nonlinear Dyn.
,
107
(
3
), pp.
1887
1902
.10.1007/s11071-021-06969-0
26.
Abohamer
,
M. K.
,
Awrejcewicz
,
J.
,
Starosta
,
R.
,
Amer
,
T. S.
, and
Bek
,
M. A.
,
2021
, “
Influence of the Motion of a Spring Pendulum on Energy-Harvesting Devices
,”
Appl. Sci.
,
11
(
18
), p.
8658
.10.3390/app11188658
27.
Wang
,
D.
,
Chen
,
Y.
,
Wiercigroch
,
M.
, and
Cao
,
Q.
,
2016
, “
Bifurcation and Dynamic Response Analysis of Rotating Blade Excited by Upstream Vortices
,”
Appl. Math. Mech.
,
37
(
9
), pp.
1251
1274
.10.1007/s10483-016-2128-6
You do not currently have access to this content.