Abstract

New generations of spark-ignition engines include exhaust gas recirculation (EGR) to improve the engine efficiency. Depending on the design of the EGR routing, some differences in the total amount of recirculated gases that reach each cylinder can be induced. This affects the air-to-fuel ratio on each cylinder due to the combination of the different temperature and composition of the gases at the intake valve closure. As a consequence, significant deviations in the combustion process and the subsequent composition upstream the three-way catalyst can be reached. This paper explores these effects on catalyst performance and tailpipe emissions, individualizing the behavior for each regulated species. The study was performed in a four-cylinder naturally aspirated engine with Atkinson cycle and a close-coupled three-way catalyst. The most significant deterioration in conversion efficiency appeared for the nitrogen oxides, directly linked to the EGR dispersion level. In the case of carbon monoxide (CO) emissions, no significant impact was observed except at high average EGR rates, where one or more of the cylinders exceeded the EGR tolerance for that speed and load. Based on these results, a strategy where the fuel injector command is adapted to correct the air-to-fuel ratio deviations induced by the EGR was developed and implemented.

References

1.
Zhuang
,
W.
,
Li
,
S.
,
Zhang
,
X.
,
Kum
,
D.
,
Song
,
Z.
,
Yin
,
G.
, and
Ju
,
F.
,
2020
, “
A Survey of Powertrain Configuration Studies on Hybrid Electric Vehicles
,”
Appl. Energy
,
262
, p.
114553
.10.1016/j.apenergy.2020.114553
2.
Wu
,
G.
,
Zhang
,
X.
, and
Dong
,
Z.
,
2015
, “
Powertrain Architectures of Electrified Vehicles: Review, Classification and Comparison
,”
J. Franklin Inst.
,
352
(
2
), pp.
425
448
.10.1016/j.jfranklin.2014.04.018
3.
Rusich
,
A.
, and
Danielis
,
R.
,
2015
, “
Total Cost of Ownership, Social Lifecycle Cost and Energy Consumption of Various Automotive Technologies in Italy
,”
Res. Transp. Econ.
,
50
, pp.
3
16
.10.1016/j.retrec.2015.06.002
4.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
5.
Mahendar
,
S.
,
Erlandsson
,
A.
, and
Adlercreutz
,
L.
,
2018
, “
Challenges for Spark Ignition Engines in Heavy Duty Application: A Review
,”
SAE
Technical Paper No. 2018-01-0907. 10.4271/2018-01-0907
6.
Lumsden
,
G.
,
Oudenijeweme
,
D.
,
Fraser
,
N.
, and
Blaxill
,
H.
,
2009
, “
Development of a Turbocharged Direct Injection Downsizing Demonstrator Engine
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1420
1432
.10.4271/2009-01-1503
7.
Wang
,
Z.
,
Liu
,
H.
, and
Reitz
,
R. D.
,
2017
, “
Knocking Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
78
112
.10.1016/j.pecs.2017.03.004
8.
Alshammari
,
M.
,
Alshammari
,
F.
, and
Pesyridis
,
A.
,
2019
, “
Electric Boosting and Energy Recovery Systems for Engine Downsizing
,”
Energies
,
12
(
24
), p.
4636
.10.3390/en12244636
9.
Parsons
,
D.
,
Orchard
,
S.
,
Evans
,
N.
,
Ozturk
,
U.
,
Burke
,
R.
, and
Brace
,
C.
,
2021
, “
A Comparative Study Into the Effects of Pre and Post Catalyst Exhaust Gas Recirculation on the Onset of Knock
,”
Int. J. Engine Res.
,
22
(
9
), pp.
2819
2829
.10.1177/1468087420962294
10.
Grandin
,
B.
,
Ångström
,
H. E.
,
Stålhammar
,
P.
, and
Olofsson
,
E.
,
1998
, “
Knock Suppression in a Turbocharged SI Engine by Using Cooled EGR
,”
SAE
Technical Paper No. 982476. 10.4271/982476
11.
Climent
,
H.
,
Dolz
,
V.
,
Pla
,
B.
, and
González-Domínguez
,
D.
,
2022
, “
Analysis on the Potential of EGR Strategy to Reduce Fuel Consumption in Hybrid Powertrains Based on Advanced Gasoline Engines Under Simulated Driving Cycle Conditions
,”
Energy Convers. Manage.
,
266
, p.
115830
.10.1016/j.enconman.2022.115830
12.
Wang
,
Y.
,
Conway
,
G.
, and
Chadwell
,
C.
,
2019
, “
Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 1: Part Load
,”
SAE
Technical Paper No. 2019-01-0241. 10.4271/2019-01-0241
13.
Wang
,
Y.
,
Conway
,
G.
, and
Chadwell
,
C.
,
2019
, “
Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 2: High Load
,”
SAE
Technical Paper No. 2019-01-0237. 10.4271/2019-01-0237
14.
Kumar
,
P.
, and
Sellnau
,
M.
,
2021
, “
EGR System Optimization for Light-Duty Gasoline Compression Ignition (GCI) Engine
,”
SAE
Technical Paper No. 2021-01-0515. 10.4271/2021-01-0515
15.
Gong
,
C.
,
Si
,
X.
, and
Liu
,
F.
,
2021
, “
Combustion and Emissions Behaviors of a Stoichiometric GDI Engine With Simulated EGR (CO2) at Low Load and Different Spark Timings
,”
Fuel
,
295
, p.
120614
.10.1016/j.fuel.2021.120614
16.
Marchitto
,
L.
,
Tornatore
,
C.
,
Valentino
,
G.
, and
Teodosio
,
L.
,
2019
, “
Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine Under Low-Full Load Conditions
,”
SAE
Technical Paper No. 2019-24-0021. 10.4271/2019-24-0021
17.
Galindo
,
J.
,
Climent
,
H.
,
De la Morena
,
J.
,
Pitarch
,
R.
,
Guilain
,
S.
, and
Besançon
,
T.
,
2021
, “
A Methodology to Study the Interaction Between Variable Valve Actuation and Exhaust Gas Recirculation Systems for Spark-Ignition Engines From Combustion Perspective
,”
Energy Convers. Manage.
,
250
, p.
114859
.10.1016/j.enconman.2021.114859
18.
Piqueras
,
P.
,
De la Morena
,
J.
,
Sanchis
,
E. J.
, and
Pitarch
,
R.
,
2020
, “
Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines
,”
Appl. Sci.
,
10
(
21
), p.
7634
.10.3390/app10217634
19.
Jost
,
A. K.
,
Günthner
,
M.
,
Müller
,
F.
, and
Weigel
,
A.
,
2022
, “
Investigation of an Engine Concept for CNG-OME Dual Fuel Operation Using External and Internal EGR
,”
SAE
Technical Paper No. 2022-32-0067. 10.4271/2022-32-0067
20.
Tripathy
,
S.
, and
Srivastava
,
D. K.
,
2022
, “
Effect of Internal Exhaust Gas Recirculation on Performance, Combustion, and Emissions in a PFI Camless Engine
,”
Environ. Prog. Sustainable Energy
,
41
(
5
), p.
13849
.10.1002/ep.13849
21.
Dimitriou
,
P.
,
Burke
,
R.
,
Copeland
,
C. D.
, and
Akehurst
,
S.
,
2015
, “
Study on the Effects of EGR Supply Configuration on Cylinder-to-Cylinder Dispersion and Engine Performance Using 1D-3D Co-Simulation
,”
SETC Small Engine Technology Conference
, Osaka, Japan, Nov. 17–19, Paper No. JSAE 20159816.10.4271/2015-32-0816
22.
Galindo
,
J.
,
Climent
,
H.
,
De la Morena
,
J.
,
González-Domínguez
,
D.
,
Guilain
,
S.
, and
Besançon
,
T.
,
2023
, “
Assessment of Air-Management Strategies to Improve the Transient Performance of a Gasoline Engine Under High EGR Conditions During Load-Decrease Operation
,”
Int. J. Engine Res.
,
24
(
2
), pp.
506
520
.10.1177/14680874211055578
23.
Yang
,
R.
,
Sun
,
X.
,
Zhang
,
Y.
,
Fu
,
J.
, and
Liu
,
Z.
,
2023
, “
Numerical Investigation of the Fuel/Air Ratio Sensor Sensitivity in a Port-Fuel-Injected Spark-Ignition Engine Equipped With Three-Way Catalysts
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051201
.10.1115/1.4056272
24.
Hu
,
R.
,
Zhang
,
F.
,
Peng
,
Z.
, and
Pei
,
Y.
,
2022
, “
The NOx Emission Characteristics of Gasoline Vehicles During Transient Driving Cycles
,”
Transp. Res. Part D: Transp. Environ.
,
109
, p.
103386
.10.1016/j.trd.2022.103386
25.
Getsoian
,
A. B.
,
Theis
,
J. R.
, and
Lambert
,
C. K.
,
2018
, “
Sensitivity of Three-Way Catalyst Light-Off Temperature to Air-Fuel Ratio
,”
Emiss. Control Sci. Technol.
,
4
(
3
), pp.
136
142
.10.1007/s40825-018-0089-3
26.
Galindo
,
J.
,
Climent
,
H.
,
Navarro
,
R.
,
Miguel-García
,
J.
,
Chalet
,
D.
, and
Pretot
,
P. E.
,
2021
, “
A Study on the High Pressure EGR Transport and Application to the Dispersion Among Cylinders in Automotive Engines
,”
Int. J. Engine Res.
,
22
(
10
), pp.
3164
3178
.10.1177/1468087420969263
27.
Novella
,
R.
,
Pla
,
B.
,
Bares
,
P.
, and
Jiménez
,
I.
,
2022
, “
Acoustic Characterization of Combustion Chambers in Reciprocating Engines: An Application for Low Knocking Cycles Recognition
,”
Int. J. Engine Res.
,
23
(
1
), pp.
120
131
.10.1177/1468087420980565
28.
Napolitano
,
P.
,
Jiménez
,
I.
,
Pla
,
B.
, and
Beatrice
,
C.
,
2022
, “
Knock Recognition Based on Vibration Signal and Wiebe Function in a Heavy-Duty Spark Ignited Engine Fueled With Methane
,”
Fuel
,
315
, p.
122957
.10.1016/j.fuel.2021.122957
29.
Scocozza
,
G. F.
,
Silvagni
,
G.
,
Brusa
,
A.
,
Cavina
,
N.
,
Ponti
,
F.
,
Ravaglioli
,
V.
,
De Cesare
,
M.
,
Panciroll
,
M.
, and
Benedetti
,
C.
,
2022
, “
Development and Validation of a Virtual Sensor for Estimating the Maximum In-Cylinder Pressure of SI and GCI Engines
,”
SAE
Technical Paper No. 2021-24-0026. 10.4271/2021-24-0026
30.
Posch
,
S.
,
Pirker
,
G.
,
Kefalas
,
A.
, and
Wimmer
,
A.
,
2022
, “
Development of a Virtual Sensor to Predict Cylinder Pressure Signal Based on a Knock Sensor Signal
,”
SAE
Technical Paper No. 2022-01-0627. 10.4271/2022-01-0627
You do not currently have access to this content.