Abstract

One of the main challenges arising from hydrogen-rich fuel mixtures is to prevent flame flashback. In typical gas turbines, the fuel is commonly injected through holes in the axial swirler vanes to achieve a high mixing quality. However, this injection method is not perfect and can cause nonhomogeneous mixing regions, so that locally rich fuel clusters can significantly increase flashback propensity. This work aims to establish a link between the local mixing quality of fuel and air and flashback limits obtained experimentally under elevated pressure conditions. The nonreacting experiments have been conducted at an atmospheric mockup test rig and acetone-planar laser-induced fluorescence (PLIF) has quantified the local fuel concentration. Zones of high equivalence ratio are evident close to the center body wall. The near-wall equivalence ratio fields reveal that the critical probability of the local equivalence ratio being greater than the one for perfect premixing is between 20% and 35% for all hydrogen concentrations at the flashback limits observed. A probability of 35% is selected as a critical threshold to derive a correlation between the local and the global equivalence ratio in technical premixing. Even though the correlation is specific to the investigated burner configuration, the presented methodology offers valuable insights into the impact of the local mixing quality on flashback propensity, which can improve flashback prediction models formulated for perfect premixing conditions.

References

1.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
2.
Funke
,
H. H. W.
,
Börner
,
S.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2012
, “
Modification and Testing of an Engine and Fuel Control System for a Hydrogen Fuelled Gas Turbine
,”
Prog. Propul. Phys.
, 2, pp.
475
486
.10.1051/eucass/201102475
3.
Gupta
,
K. K.
,
Rehman
,
A.
, and
Sarviya
,
R. M.
,
2010
, “
Bio-Fuels for the Gas Turbine: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2946
2955
.10.1016/j.rser.2010.07.025
4.
Öberg
,
S.
,
Odenberger
,
M.
, and
Johnsson
,
F.
,
2022
, “
Exploring the Competitiveness of Hydrogen-Fueled Gas Turbines in Future Energy Systems
,”
Int. J. Hydrogen Energy
,
47
(
1
), pp.
624
644
.10.1016/j.ijhydene.2021.10.035
5.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2018
, “
Flashback Resistance and Fuel–Air Mixing in Lean Premixed Hydrogen Combustion
,”
J. Propul. Power
,
34
(
3
), pp.
690
701
.10.2514/1.B36646
6.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Flow Field Manipulation by Axial Air Injection to Achieve Flashback Resistance and Its Impact on Mixing Quality
,”
AIAA
Paper No. 2013–2603.10.2514/6.2013-2603
7.
Sattelmayer
,
T.
,
Mayer
,
C.
, and
Sangl
,
J.
,
2016
, “
Interaction of Flame Flashback Mechanisms in Premixed Hydrogen–Air Swirl Flames
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
011503
.10.1115/1.4031239
8.
Nauert
,
A.
,
Petersson
,
P.
,
Linne
,
M.
, and
Dreizler
,
A.
,
2007
, “
Experimental Analysis of Flashback in Lean Premixed Swirling Flames: Conditions Close to Flashback
,”
Exp. Fluids
,
43
(
1
), pp.
89
100
.10.1007/s00348-007-0327-x
9.
Ebi
,
D.
, and
Clemens
,
N. T.
,
2016
, “
Experimental Investigation of Upstream Flame Propagation During Boundary Layer Flashback of Swirl Flames
,”
Combust. Flame
,
168
, pp.
39
52
.10.1016/j.combustflame.2016.03.027
10.
Ebi
,
D.
,
Bombach
,
R.
, and
Jansohn
,
P.
,
2021
, “
Swirl Flame Boundary Layer Flashback at Elevated Pressure: Modes of Propagation and Effect of Hydrogen Addition
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6345
6353
.10.1016/j.proci.2020.06.305
11.
Novoselov
,
A. G.
,
Ebi
,
D.
, and
Noiray
,
N.
,
2022
, “
Accurate Prediction of Confined Turbulent Boundary Layer Flashback Through a Critically Strained Flame Model
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101013
.10.1115/1.4055413
12.
Ebi
,
D.
, and
Jansohn
,
P.
,
2021
, “
Boundary Layer Flashback Limits of Hydrogen-Methane-Air Flames in a Generic Swirl Burner at Gas Turbine-Relevant Conditions
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081011
.10.1115/1.4049777
13.
De
,
A.
, and
Acharya
,
S.
,
2012
, “
Parametric Study of Upstream Flame Propagation in Hydrogen-Enriched Premixed Combustion: Effects of Swirl, Geometry and Premixedness
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14649
14668
.10.1016/j.ijhydene.2012.07.008
14.
Filatyev
,
S.
,
Thariyan
,
M.
,
Lucht
,
R.
, and
Gore
,
J.
,
2007
, “
Simultaneous Stereo Particle Image Velocimetry and Double-Pulsed Planar Laser-Induced Fluorescence of Turbulent Premixed Flames
,”
Combust. Flame
,
150
(
3
), pp.
201
209
.10.1016/j.combustflame.2007.02.005
15.
Sadanandan
,
R.
,
Brunzendorf
,
J.
,
Paul
,
M.
,
Grosshans
,
H.
, and
Markus
,
D.
,
2020
, “
An Experimental Investigation of Scalar Mixing and Flame Structure of a Partially Premixed Flame
,”
Combust. Sci. Technol.
,
194
(
6
), pp.
1091
1107
.10.1080/00102202.2020.1802589
16.
Böhm
,
B.
,
Frank
,
J. H.
, and
Dreizler
,
A.
,
2011
, “
Temperature and Mixing Field Measurements in Stratified Lean Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1583
1590
.10.1016/j.proci.2010.06.139
17.
Cessou
,
A.
,
Varea
,
E.
,
Criner
,
K.
,
Godard
,
G.
, and
Vervisch
,
P.
,
2011
, “
Simultaneous Measurements of OH, Mixture Fraction and Velocity Fields to Investigate Flame Stabilization Enhancement by Electric Field
,”
Exp. Fluids
,
52
(
4
), pp.
905
917
.10.1007/s00348-011-1164-5
18.
Weinkauff
,
J.
,
Trunk
,
P.
,
Frank
,
J. H.
,
Dunn
,
M. J.
,
Dreizler
,
A.
, and
Böhm
,
B.
,
2015
, “
Investigation of Flame Propagation in a Partially Premixed Jet by High-Speed-Stereo-PIV and Acetone-PLIF
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3773
3781
.10.1016/j.proci.2014.05.022
19.
Sharaborin
,
D. K.
,
Savitskii
,
A. G.
,
Bakharev
,
G. Y.
,
Lobasov
,
A. S.
,
Chikishev
,
L. M.
, and
Dulin
,
V. M.
,
2021
, “
PIV/PLIF Investigation of Unsteady Turbulent Flow and Mixing Behind a Model Gas Turbine Combustor
,”
Exp. Fluids
,
62
(
5
), p.
96
.https://link.springer.com/article/10.1007/s00348-021-03181-z
20.
Klinner
,
J.
, and
Willert
,
C. E.
,
2016
, “
Measurements of Turbulent Jet Mixing in a Turbulent Co-Flow Including the Influence of Periodic Forcing and Heating
,”
Flow, Turbul. Combust.
,
98
(
3
), pp.
751
779
.10.1007/s10494-016-9789-3
21.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.10.1016/j.combustflame.2010.08.004
22.
Ranjan
,
R.
, and
Clemens
,
N. T.
,
2021
, “
Insights Into Flashback-to-Flameholding Transition of Hydrogen-Rich Stratified Swirl Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6289
6297
.10.1016/j.proci.2020.06.017
23.
Ebi
,
D.
,
Jansohn
,
P.
, and
Novoselov
,
A.
,
2022
, “
Investigation of Flame Flashback at Gas Turbine Relevant Conditions Through Experiment and Modelling
,” Flash-GT Project Final Report,
Swiss Federal Office Energy
.
24.
Ambrose
,
D.
,
Sprake
,
C. H. S.
, and
Townsend
,
R.
,
1974
, “
Thermodynamic Properties of Organic Oxygen Compounds XXXIII. The Vapour Pressure of Acetone
,”
J. Chem. Thermodyn.
,
6
(
7
), pp.
693
700
.10.1016/0021-9614(74)90119-0
25.
Stöhr
,
M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2015
, “
Transient Effects of Fuel–Air Mixing in a Partially-Premixed Turbulent Swirl Flame
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3327
3335
.10.1016/j.proci.2014.06.095
26.
Brownell
,
C. J.
, and
Su
,
L. K.
,
2011
, “
Measurements of Multiple Mole Fraction Fields in a Turbulent Jet by Simultaneous Planar Laser-Induced Fluorescence and Planar Rayleigh Scattering
,”
Meas. Sci. Technol.
,
22
(
8
), p.
085402
.10.1088/0957-0233/22/8/085402
27.
Wilde
,
B. R.
,
2014
, “
Dynamics of Variable Density Ratio Reacting Jets in Unsteady, Vitiated Crossflows
,”
Doctor of Philosophy
,
Georgia Institute of Technology
, Atlanta, GA.http://hdl.handle.net/1853/53040
28.
Fric
,
T. F.
, and
Roshko
,
A.
,
2006
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
29.
Kamotani
,
Y.
, and
Greber
,
I.
,
1972
, “
Experiments on a Turbulent Jet in a Cross Flow
,”
AIAA J.
,
10
(
11
), pp.
1425
1429
.10.2514/3.50386
30.
Dayton
,
J. W.
,
Poettgen
,
B. K.
, and
Cetegen
,
B. M.
,
2020
, “
Non-Isothermal Mixing Characteristics in the Extreme Near-Field of Turbulent Jets in Hot Crossflow: Effects of Jet Exit Turbulence and Velocity Profile
,”
Phys. Fluids
,
32
(
11
), p.
115114
.10.1063/5.0026860
31.
He
,
G.
,
Guo
,
Y.
,
Hsu
,
A. T.
,
Brankovic
,
A.
,
Syed
,
S.
, and
Liu
,
N.-S.
, “
The Effect of Schmidt Number on Turbulent Scalar Mixing in a Jet-In-Crossflow
,”
ASME
Paper No. 99-GT-137.10.1115/99-GT-137
32.
Thurber
,
M. C.
, and
Hanson
,
R. K.
,
1999
, “
Pressure and Composition Dependences of Acetone Laser-Induced Fluorescence With Excitation at 248, 266, and 308 nm
,”
Appl. Phys. B Lasers Opt.
,
69
(
3
), pp.
229
240
.10.1007/s003400050799
33.
Lozano
,
A.
,
Yip
,
B.
, and
Hanson
,
R. K.
,
1992
, “
Acetone: A Tracer for Concentration Measurements in Gaseous Flows by Planar Laser-Induced Fluorescence
,”
Exp. Fluids
,
13
(
6
), pp.
369
376
.10.1007/BF00223244
34.
Thurber
,
M. C.
,
Grisch
,
F.
,
Kirby
,
B. J.
,
Votsmeier
,
M.
, and
Hanson
,
R. K.
,
1998
, “
Measurements and Modeling of Acetone Laser-Induced Fluorescence With Implications for Temperature-Imaging Diagnostics
,”
Appl. Opt.
,
37
(
21
), pp.
4963
4978
.10.1364/AO.37.004963
You do not currently have access to this content.