Abstract

While the employment of Exhaust Gas Recirculation (EGR) is a well-established technique in Internal Combustion Engines to limit NOx emissions, its adoption in Gas Turbine engines has not yet found a practical application due to its expensive and complex installation that doesn't justify the emissions reduction when compared to already established DLN combustion technologies. EGR becomes an interesting option in GT engines considering the possibility of increasing the CO2 content of the exhaust gases to improve the efficiency of Carbon Capture and Storage (CCS) units. However, the decrease in oxygen content of the combustion air is extremely challenging in terms of combustion stability and therefore of engine operability. In the present work, a low NOx burner was studied at ambient pressure in a reactive single burner test rig. The burner was fed with methane and characterized in terms of emissions and stability limits at different operating conditions. In addition, the flame position and shape were studied through OH* chemiluminescence imaging together with the flow field thanks to PIV measurements. The effects of CO2 addition on the flame were then investigated at different EGR increasing levels, highlighting the impact of the oxygen content on the combustion reaction intensity. Variations in emissions and burner stability limits in terms of maximum sustainable CO2 content were also studied, to detail the burner operating window. Data have been thoroughly analyzed to gather information on the burner behavior to support the design of new technical solutions capable of ensuring both proper flame stability and low CO and NOx emissions.

References

1.
IEA
,
2022
, “
World Energy Outlook 2022
,”
IEA
,
Paris, France, Report
.https://www.iea.org/reports/world-energy-outlook-2022
2.
Lieuwen
,
T.
,
Chang
,
M.
, and
Amato
,
A.
,
2013
, “
Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations
,”
Combust. Flame
,
160
(
8
), pp.
1311
1314
.10.1016/j.combustflame.2013.05.001
3.
Guethe
,
F.
,
de la Cruz García
,
M.
, and
Burdet
,
A.
,
2009
, “
Flue Gas Recirculation in Gas Turbine: Investigation of Combustion Reactivity and NOx Emission
,”
ASME
Paper No. GT2009-59221.10.1115/GT2009-59221
4.
Burdet
,
A.
,
Lachaux
,
T.
,
De La
,
C.
,
García
,
M.
, and
Winkler
,
D.
,
2010
, “
Combustion Under Flue Gas Recirculation Conditions in a Gas Turbine Lean Premix Burner
,”
ASME
Paper No. GT2010-23396.10.1115/GT2010-23396
5.
Li
,
H.
,
ElKady
,
A. M.
, and
Evulet
,
A. T.
,
2009
, “
Effect of Exhaust Gas Recirculation on NOx Formation in Premixed Combustion System
,”
AIAA
Paper No. 2009–226.10.2514/6.2009-226
6.
Tanaka
,
Y.
,
Nose
,
M.
,
Nakao
,
M.
,
Saitoh
,
K.
,
Ito
,
E.
, and
Tsukagoshi
,
K.
,
2013
, “
Development of Low NOx Combustion System With EGR for 1700 °C-Class Gas Turbine
,”
Mitsubishi Heavy Industries
, Report No.
1
.https://www.mhi.co.jp/technology/review/pdf/e501/e501001.pdf
7.
Burnes
,
D.
,
Saxena
,
P.
, and
Dunn
,
P.
,
2020
, “
Study of Using Exhaust Gas Recirculation on a Gas Turbine for Carbon Capture
,”
ASME
Paper No. GT2020-16080.10.1115/GT2020-16080
8.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
,
2008
, “
Exhaust Gas Recirculation in DLN F-Class Gas Turbines for Post-Combustion CO2 Capture
,”
ASME
Paper No. GT2008-51152.10.1115/GT2008-51152
9.
Evulet
,
A. T.
,
ELKady
,
A. M.
,
Branda
,
A. R.
, and
Chinn
,
D.
,
2009
, “
On the Performance and Operability of GE's Dry Low NOx Combustors Utilizing Exhaust Gas Recirculation for PostCombustion Carbon Capture
,”
Energy Procedia
,
1
(
1
), pp.
3809
3816
.10.1016/j.egypro.2009.02.182
10.
Giorgetti
,
S.
,
De Paepe
,
W.
,
Bricteux
,
L.
,
Parente
,
A.
, and
Contino
,
F.
,
2017
, “
Carbon Capture on a Micro Gas Turbine: Assessment of the Performance
,”
Energy Procedia
,
105
, pp.
4046
4052
.10.1016/j.egypro.2017.03.854
11.
Petersen
,
N. H.
,
Bexten
,
T.
,
Goßrau
,
C.
, and
Wirsum
,
M.
,
2021
, “
Analysis of the Emission Reduction Potential and Combustion Stability Limits of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME
Paper No. GT2021-58674.10.1115/GT2021-58674
12.
Park
,
Y.
,
Choi
,
M.
,
Kim
,
D.
,
Lee
,
J.
, and
Choi
,
G.
,
2021
, “
Performance Analysis of Large-Scale Industrial Gas Turbine Considering Stable Combustor Operation Using Novel Blended Fuel
,”
Energy
,
236
, p.
121408
.10.1016/j.energy.2021.121408
13.
De Santis
,
A.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2016
, “
CFD Analysis of Exhaust Gas Recirculation in a Micro Gas Turbine Combustor for CO2 Capture
,”
Fuel
,
173
, pp.
146
154
.10.1016/j.fuel.2016.01.063
14.
Cameretti
,
M. C.
,
Tuccillo
,
R.
, and
Piazzesi
,
R.
,
2013
, “
Study of an Exhaust Gas Recirculation Equipped Micro Gas Turbine Supplied With Bio-Fuels
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
162
173
.10.1016/j.applthermaleng.2013.04.029
15.
Zhang
,
S.
,
Li
,
Y.
,
Wang
,
S.
,
Zeng
,
H.
,
Liu
,
J.
,
Duan
,
X.
, and
Dong
,
H.
,
2020
, “
Experimental and Numerical Study the Effect of EGR Strategies on in-Cylinder Flow, Combustion and Emissions Characteristics in a Heavy-Duty Higher CR Lean-Burn NGSI Engine Coupled With Detail Combustion Mechanism
,”
Fuel
,
276
, p.
118082
.10.1016/j.fuel.2020.118082
16.
Galindo
,
J.
,
Climent
,
H.
,
Navarro
,
R.
, and
García-Olivas
,
G.
,
2021
, “
Assessment of the Numerical and Experimental Methodology to Predict EGR Cylinder-to-Cylinder Dispersion and Pollutant Emissions
,”
Int. J. Engine Res.
,
22
(
10
), pp.
3128
3146
.10.1177/1468087420972544
17.
Gicquel
,
L. Y.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.10.1016/j.pecs.2012.04.004
18.
Hasti
,
V. R.
,
Lucht
,
R. P.
, and
Gore
,
J. P.
,
2019
, “
Large Eddy Simulation of Hydrogen Piloted CH4/Air Premixed Combustion With CO2 Dilution
,”
J. Energy Inst.
,
93
(
3
), pp.
1099
1109
.10.1016/j.joei.2019.10.004
19.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Meloni
,
R.
, and
Andreini
,
A.
,
2021
, “
Lean Blow-Out Prediction in an Industrial Gas Turbine Combustor Through a LES-Based CFD Analysis
,”
Combust. Flame
,
229
, p.
111391
.10.1016/j.combustflame.2021.02.037
20.
Jaravel
,
T.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Bulat
,
G.
,
2017
, “
Large Eddy Simulation of an Industrial Gas Turbine Combustor Using Reduced Chemistry With Accurate Pollutant Prediction
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3817
3825
.10.1016/j.proci.2016.07.027
21.
Guyot
,
D.
,
Guethe
,
F.
,
Schuermans
,
B.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2010
, “
CH*/OH* Chemiluminescence Response of an Atmospheric Premixed Flame Under Varying Operating Conditions
,”
ASME
Paper No. GT2010-23135.10.1115/GT2010-23135
22.
De Persis
,
S.
,
Cabot
,
G.
,
Pillier
,
L.
,
Gökalp
,
I.
, and
Boukhalfa
,
A. M.
,
2013
, “
Study of Lean Premixed Methane Combustion With CO2 Dilution Under Gas Turbine Conditions
,”
Energy Fuels
,
27
(
2
), pp.
1093
1103
.10.1021/ef3016365
23.
Cerutti
,
M.
,
Roma
,
M.
,
Picchi
,
A.
,
Becchi
,
R.
, and
Facchini
,
B.
,
2019
, “
Improving Emission and Blow-Out Characteristics of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
ASME
Paper No. GT2019-91235.10.1115/GT2019-91235
24.
Cerutti
,
M.
,
Riccio
,
G.
,
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
, and
Picchi
,
A.
,
2019
, “
Experimental and Numerical Investigations of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021006
.10.1115/1.4040814
25.
Cerutti
,
M.
,
Nassini
,
P. C.
,
Pampaloni
,
D.
, and
Andreini
,
A.
,
2021
, “
Experimental and Numerical Characterization of a Novel Natural Gas Low NOx Burner in Gas Turbine Realistic Environment
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071018
.10.1115/1.4049446
26.
Dantec Dynamics
,
2000
, “
FlowManager Software and Introduction to PIV Instrumentation
,” Software User’s Guide, Denmark.
27.
He
,
L.
,
Guo
,
Q.
,
Gong
,
Y.
,
Wang
,
F.
, and
Yu
,
G.
,
2019
, “
Investigation of OH* Chemiluminescence and Heat Release in Laminar Methane–Oxygen co-Flow Diffusion Flames
,”
Combust. Flame
,
201
, pp.
12
22
.10.1016/j.combustflame.2018.12.009
28.
Guethe
,
F.
,
Guyot
,
D.
,
Singla
,
G.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Chemiluminescence as Diagnostic Tool in the Development of Gas Turbines
,”
Appl. Phys. B: Lasers Opt.
,
107
(
3
), pp.
619
636
.10.1007/s00340-012-4984-y
29.
Sardeshmukh
,
S.
,
Bedard
,
M.
, and
Anderson
,
W.
,
2017
, “
The Use of OH* and CH* as Heat Release Markers in Combustion Dynamics
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
409
423
.10.1177/1756827717718483
30.
Terhaar
,
S.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2014
, “
Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam Diluted Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041503
.10.1115/1.4028392
31.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, “
Gas Turbine Combustion: Alternative Fuels and Emissions
,”
Gas Turbine Combustion
, 3rd ed., CRC press, Boca Raton, FL.
32.
Montgomery Smith
,
L.
,
Keefer
,
D. R.
, and
Sudharsanan
,
S. I.
,
1988
, “
Abel Inversion Using Transform Techniques
,”
J. Quant. Spectrosc. Radiat. Transfer
,
39
(
5
), pp.
367
373
.10.1016/0022-4073(88)90101-X
You do not currently have access to this content.