Abstract

Monitoring the whole performance status of aircraft engines is of paramount importance for ensuring flight safety, control system, and prognostic health management. This work introduced an aircraft engine deep learning (DL) model that integrated with engine physical knowledge. First, component networks were established for each engine component (e.g., fan, turbine, nozzle) using the independently recurrent neural network (IndRNN), self-attention mechanism, and residual network. Subsequently, based on the physical spatial alignment of engine components, the data transfer between component networks was determined to establish the whole engine model. Case studies were conducted on exhaust gas temperature (EGT) prediction for two civil aircraft engines and thrust prediction for another two turbofan engines. When processing the actual engine running data, the data augmentation method was invested to address the issue of nonuniform distribution of engine working states in the training data. Compared with three pure data-driven models based on IndRNN, recurrent neural network, and long short-term memory (LSTM), the model introduced in this work demonstrated superior precision in both steady states and transient states. Specifically, the achieved mean absolute relative error (MARE) was 0.54% for EGT prediction and 0.41% for thrust prediction. When adjusting the time-steps, the introduced model showed steadier predictions with minimal MARE fluctuation compared to the three pure data-driven models, enhancing overall predictive stability.

References

1.
Nguyen
,
T. H.
,
Nguyen
,
P. T.
, and
Garnier
,
F.
,
2019
, “
Evaluation of the Relationship Between the Aerothermodynamic Process and Operational Parameters in the High-Pressure Turbine of an Aircraft Engine
,”
Aerosp. Sci. Technol.
,
86
, pp.
93
105
.10.1016/j.ast.2019.01.011
2.
Khan
,
K.
,
Sohaib
,
M.
,
Rashid
,
A.
,
Ali
,
S.
,
Akbar
,
H.
,
Basit
,
A.
, and
Ahmad
,
T.
,
2021
, “
Recent Trends and Challenges in Predictive Maintenance of Aircraft's Engine and Hydraulic System
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
8
), p.
403
.10.1007/s40430-021-03121-2
3.
Rath
,
N.
,
Mishra
,
R.
, and
Kushari
,
A.
,
2022
, “
Aero Engine Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance: An Overview
,”
Int. J. Turbo Jet-Engines
,
40
(s1), pp.
s279
s292
.10.1515/tjeng-2022-0020
4.
Bertin
,
M.
,
Plummer
,
A.
,
Bowen
,
C.
,
Johnston
,
N.
,
Griffiths
,
M.
, and
Bickley
,
D.
,
2019
, “
A Dual Lane Piezoelectric Ring Bender Actuated Nozzle-Flapper Servo Valve for Aero Engine Fuel Metering
,”
Smart Mater. Struct.
,
28
(
11
), p.
115015
.10.1088/1361-665X/ab32b0
5.
Zhou
,
X.
,
Huang
,
J.
,
Lu
,
F.
,
Zhou
,
W.
, and
Liu
,
P.
,
2023
, “
A Novel Compound Fault-Tolerant Method Based on Online Sequential Extreme Learning Machine With Cycle Reservoir for Turbofan Engine Direct Thrust Control
,”
Aerosp. Sci. Technol.
,
132
, p.
108059
.10.1016/j.ast.2022.108059
6.
Litt
,
J. S.
,
2008
, “
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
,”
ASME J. Eng. Gas Turbines Power
, 130(1), p.
011601
.10.1115/1.2747254
7.
Zhou
,
X.
,
Lu
,
F.
,
Zhou
,
W.
, and
Huang
,
J.
,
2020
, “
An Improved Multivariable Generalized Predictive Control Algorithm for Direct Performance Control of Gas Turbine Engine
,”
Aerosp. Sci. Technol.
,
99
, p.
105576
.10.1016/j.ast.2019.105576
8.
Wanzhi
,
M.
,
Zhuorui
,
P.
,
Sixin
,
W.
,
Pan
,
Q.
, and
Ximing
,
S.
,
2023
, “
Aeroengine Thrust Estimation and Embedded Verification Based on Improved Temporal Convolutional Network
,”
Chin. J. Aeronaut.
, 37(1), pp.
106
117
.10.1016/j.cja.2023.09.001
9.
Volponi
,
A. J.
, and
Rajamani
,
R.
,
2012
, “
Hybrid Models for Engine Health Management
,”
Machine Learning and Knowledge Discovery for Engineering Systems Health Management
, Chapman and Hall/CRC CRC Press, New York, pp.
395
422
.
10.
Kim
,
S.
,
Kim
,
K.
, and
Son
,
C.
,
2020
, “
Transient System Simulation for an Aircraft Engine Using a Data-Driven Model
,”
Energy
,
196
, p.
117046
.10.1016/j.energy.2020.117046
11.
Ren
,
L.
,
Qin
,
H.
,
Cai
,
N.
,
Li
,
B.
, and
Xie
,
Z.
,
2022
, “
A Hybrid Degradation Evaluation Model for Aero-Engines
,”
Sustainability
,
15
(
1
), p.
29
.10.3390/su15010029
12.
Kiakojoori
,
S.
, and
Khorasani
,
K.
,
2016
, “
Dynamic Neural Networks for Gas Turbine Engine Degradation Prediction, Health Monitoring and Prognosis
,”
Neural Comput. Appl.
,
27
(
8
), pp.
2157
2192
.10.1007/s00521-015-1990-0
13.
Pang
,
S.
,
Li
,
Q.
, and
Feng
,
H.
,
2020
, “
A Hybrid Onboard Adaptive Model for Aero-Engine Parameter Prediction
,”
Aerosp. Sci. Technol.
,
105
, p.
105951
.10.1016/j.ast.2020.105951
14.
Huang
,
Y.
,
Tao
,
J.
,
Sun
,
G.
,
Wu
,
T.
,
Yu
,
L.
, and
Zhao
,
X.
,
2023
, “
A Novel Digital Twin Approach Based on Deep Multimodal Information Fusion for Aero-Engine Fault Diagnosis
,”
Energy
,
270
, p.
126894
.10.1016/j.energy.2023.126894
15.
Atasoy
,
V. E.
,
Suzer
,
A. E.
, and
Ekici
,
S.
,
2022
, “
A Comparative Analysis of Exhaust Gas Temperature Based on Machine Learning Models for Aviation Applications
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082101
.10.1115/1.4052771
16.
Hu
,
K.
,
Cheng
,
Y.
,
Wu
,
J.
,
Zhu
,
H.
, and
Shao
,
X.
,
2021
, “
Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine
,”
IEEE Trans. Cybern.
, 53(4), pp.
2531
2543
.10.1109/TCYB.2021.3124838
17.
Ullah
,
S.
,
Li
,
S.
,
Khan
,
K.
,
Khan
,
S.
,
Khan
,
I.
, and
Eldin
,
S. M.
,
2023
, “
An Investigation of Exhaust Gas Temperature of Aircraft Engine Using LSTM
,”
IEEE Access
,
11
, pp.
5168
5177
.10.1109/ACCESS.2023.3235619
18.
Zhang
,
Y.
,
Xin
,
Y.
,
Liu
,
Z.-W.
,
Chi
,
M.
, and
Ma
,
G.
,
2022
, “
Health Status Assessment and Remaining Useful Life Prediction of Aero-Engine Based on BiGRU and MMoE
,”
Reliab. Eng. Syst. Saf.
,
220
, p.
108263
.10.1016/j.ress.2021.108263
19.
Zhang
,
Z.
,
Song
,
W.
, and
Li
,
Q.
,
2022
, “
Dual-Aspect Self-Attention Based on Transformer for Remaining Useful Life Prediction
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
11
.10.1109/TIM.2022.3160561
20.
Protopapadakis
,
G.
,
Apostolidis
,
A.
, and
Kalfas
,
A. I.
,
2022
, “
Explainable and Interpretable AI-Assisted Remaining Useful Life Estimation for Aeroengines
,”
ASME
Paper No. GT2022-80777.10.1115/GT2022-80777
21.
Costa
,
N.
, and
Sánchez
,
L.
,
2022
, “
Variational Encoding Approach for Interpretable Assessment of Remaining Useful Life Estimation
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108353
.10.1016/j.ress.2022.108353
22.
Huang
,
Y.
,
Tao
,
J.
,
Zhao
,
J.
,
Sun
,
G.
,
Yin
,
K.
, and
Zhai
,
J.
,
2023
, “
Graph Structure Embedded With Physical Constraints-Based Information Fusion Network for Interpretable Fault Diagnosis of Aero-Engine
,”
Energy
,
283
, p.
129120
.10.1016/j.energy.2023.129120
23.
Li
,
H.
,
Gou
,
L.
,
Li
,
H.
, and
Liu
,
Z.
,
2023
, “
Physics-Guided Neural Network Model for Aeroengine Control System Sensor Fault Diagnosis Under Dynamic Conditions
,”
Aerospace
,
10
(
7
), p.
644
.10.3390/aerospace10070644
24.
Chao
,
M. A.
,
Kulkarni
,
C.
,
Goebel
,
K.
, and
Fink
,
O.
,
2022
, “
Fusing Physics-Based and Deep Learning Models for Prognostics
,”
Reliab. Eng. Syst. Saf.
,
217
, p.
107961
.10.1016/j.ress.2021.107961
25.
Das
,
S.
,
Tariq
,
A.
,
Santos
,
T.
,
Kantareddy
,
S. S.
, and
Banerjee
,
I.
,
2023
, “
Recurrent Neural Networks (RNNs): Architectures, Training Tricks, and Introduction to Influential Research
,”
Machine Learning for Brain Disorders
, Humana, New York, pp.
117
138
.10.1007/978-1-0716-3195-9_4
26.
Li
,
S.
,
Li
,
W.
,
Cook
,
C.
,
Zhu
,
C.
, and
Gao
,
Y.
,
2018
, “
Independently Recurrent Neural Network (IndRNN): Building a Longer and Deeper RNN
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Salt Lake City, UT, June 18–22, pp.
5457
5466
.10.1109/CVPR.2018.00572
27.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,” Advances in Neural Information Processing Systems, Vol.
30
, 1st Conference on Neural Information Processing Systems (
NIPS 2017
), Long Beach, CA.https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
You do not currently have access to this content.